
DTICAD-A267 726 DLECTI
11111 1 EI t, III 111,tlll1llll ll

C ,

CSDL-T-1 158

AN OBJECT-ORIENTED DYNAMIC
SOFTWARE PROCESS MODEL

by

Bradley J. Smith

January 1993

Master of Science Thesis
Boston University

•,==••o° .•,.93-18512
-- • llll iI~i l~tli~~lii!III,

The Charles Stark Draplr Lahtratory, Inc.
555 Technology Square, .;ambridge. Massachusetts 02139-3563

Sform Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

C;V l,1 1, -"1 "It t' V Idr~n I -;.' baa ta i
h 3tn ý !,-c n,-:'ra ,Cre*)r -, n

/ t1r. -o' I(no ;- 4P! M " a t'-c"- M'.d... F, e..t 7 C4- 188). vý-n nqtaýn. C,(2,1--A
1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

I Jan 1993 I _ __ ___ __ ___ __ ___ __

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Object-Oriented Dynamic Software Process Model

16. AUTHOR(S)

Capt Bradley J. Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: Boston University AFIT/CI/CIA- 93-092

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING

DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER

AFIT/CI
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

99
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION) 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

"NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
t"~ .Id .AN'uI StI N '

AN OBJECT-ORIENTED DYNAMIC
SOFTWARE PROCESS MODEL

by

Captain Bradley Jay Smith, USAF
Master of Science, Computer Engineering
Boston University, College of Engineering, 1993

Length: 100 Pages

Abstract

This thesis describes a new method for modeling complex dynamic processes using
object-oriented techniques. These techniques are applied to develop a sophisticated
model of the software development process. This object-oriented approach has many'
advantages over non-object-oriented System Dynamics models. Non-homogeneous
resource allocation can be explicitly modeled. This allows resource allocation strategies
and management decisions to be modeled and &',vsessed in a realistic manner. Since
software development tasks and resources are modeled as objects, they can be flexibly
created and manipulated to capture the dynamics of a particular project. Furthermore,
the principles of object-oriented inheritance lets the modeler or analyst easily extend the
model to include new resources and tasks. The thesis addresses major considerations in
modeling the software development process, as well as the detailed development of an
object-oriented software process model in C- -. A comparison is done between this
dynamic model and the empirical predictions of the popular COCOMO software
estimation system. This new object-oriented approach is not limited to software process
modeling and could be applied to a wide variety of scientific, business, and social
simulations.

Major References

1. Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams, Corset
House Publishing Co. , New York, 1987, p.188

2. Barry Boehm, Software Engineering Economics, The COCOMO Software Model, 1980
3. Roger Pressman, Software Engineering, A Practicioner's Approach, Accesiori For
4. McGraw-Hill, 1992 p. 87 I •,eTiS For

5. High Performance Systems Inc, Stella II User's Guide, 1990 NTIS CRA&I
6. Tarek Abdel-Hamid and Stuart Madnick, Software Proeect Dynamics, 1991 ' TAB
7. Smith, A. Clough, R. Vidale, N. Nguyen, S. Ahmed, The Software Process Model, Draper *tunced

Labs, May 1992 .• ton
8. Bradley Smith, Proposal for Independent Study of an Obiect Oriented Software Process

Model, May 1992
9. Grady and Caswell, Software Metrics Prentice Hall, 1987, p. 24-25 J'Str ibution I
10. Borland International, Borland C++ Programmer's Guide, Version 3.1, 1992
11. Borland International, ObjectWindows for C++ User's Guide, Version 3.1, 1992 AValdbiity Codes
12. Microsoft Inc., Microsoft Windows User's Guide, Version 3.1, 1992 j _____

DTIC QUALIJT TNSPECTED -3

0

BOSTON UNIVERSITY

GRADUATE SCHOOL

Thesis

AN OBJECT-ORIENTED DYNAMIC

SOFTWARE PROCESS MODEL

by

Bradley Jay Smith

RB&, Rensselaer Polytechnic Institute, 1986
M.RA, SL Mary's University, 1989

Submitted in partialfuyfdlment of the

requirements for the degree of

Masters of Science, Computer Engineering

1993

Approved by

First Reader: 6-..-Lk , ,) L. L
Richard F. Vidale, Ph.D.
Professor of Electrical, Computer and Systems Engineering

Second Reader: 4_____/__________________________
Thomas D. C. Little, Ph.D.
Assistant Professor of Electrical, Computer and Systems Engineering

ii

Acknowledgements
12/10/92

This thesis was prepared at The Charles Stark Draper Laboratory Inc., under Internal Research
and Development Contract #349.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency of the
findings or conclusions contained herein. It is published for the exchange and stimulation of
ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory Inc,
Cambridge, Massachusetts.

fn

Bradley J. Smith, Author

Permission is hereby granted by The Charles Stark Draper Laboratory Inc to Boston University to
reproduce any or all of this thesis.

Dedication

To my wife and daughter.

Many thanks to the people of Draper Labs including, but certainly not limited to:

N. Nguyen, A. Clough, S. Ahmed

Thanks also to the Boston University Advisors:

Prof. Richard Vidale and Prof. Thomas Little

iii

AN OBJECT-ORIENTED DYNAMIC

SOFTWARE PROCESS MODEL

(Order No.)

by

Bradley Jay Smith

Boston University, College of Engineering, 1992

Major Professor: Richard F. V'idale
Professor of Electrical Computer and Systems Engineering

Abstract

This thesis describes a new method for modeling complex dynamic processes using
object-oriented techniques. These techniques are applied to develop a sophisticated
model of the software development process. This object-oriented approach has many
advantages over non-object-oriented System Dynamics models. Non-homogeneous
resource allocation can be explicitly modeled This allows resource allocation strategies
and management decisions to be modeled and assessed in a realistic manner. Since
software development tasks and resources are modeled as objects, they can be flexibly
created and manipulated to capture the dynamics of a particular project. Furthermore,
the principles of object-oriented inheritance lets the modeler or analyst easily extend the
model to include new resources and tasks. The thesis addresses major considerations in
modeling the software development process, as well as the detailed development of an
object-oriented software process model in C+ +. A comparison is done between this
dynamic model and the empirical predictions of the popular COCOMO software
estimation system. This new object-oriented approach is not limited to software process
modeling and could be applied to a wide variety of scientific, business, and social
simulations.

iv

Table of Contents

Problem Overview .. 1
Types of Planning Tools ... 1
Lim itations of the Draper Software Process Model ... 2
Key Object-Oriented Concepts .. 3
Anticipated Advantages of OOPS Method ... 4
Process Features .. 5
Resource Attributes .. 10

Class Hierarchy for Model .. 15
Model Design ... 15
Overview of Model Classes ... 16

Class Hierarchy for W indows Displays ... 21
Overview .. 21

Sam ple Model Structure .. 24
Sam ple Output ... 26

Model Calibration and Testing ... 29
Com parison with COCOMO and Draper Model .. 29
Prototype Paradigm Experim ent .. 30
M ultiple Resource Exam ple ... 32

Advantages and Disadvantages of the Object-Oriented Approach 34
Advantages .. 34
Disadvantages .. 34

Future Directions .. 36
M odel Enhancem ents .. 36
W indows Interface Enhancements ... 37

Conclusion .. 39
Appendix A: Class Descriptions .. 41
Model Class Descriptions .. 42

Value Class .. 42
Base Class .. 42
Nam edBase Class ... 43
Productivity Class ... 43
Task Class .. 44
Allocation Class .. 45
Resource Class ... 46
People Class .. 47
M odel Class ... 48

W indows Modeling Classes .. 50
M odelViewer Class ... 50
ControlW indow Class .. 50
TaskW indow Class ... 51
ResourceW indow Class .. 51
AllocationW indow Class ... 52
Sum m aryW indow Class .. 52
GPoint Class .. 52
Graph Class ... 52
GraphW indow Class .. 53

Appendix B: Source Code ... 55
MODEL.H ... 56
MODW IN.H .. 64
MENU.H ... 68
R E S .H .. 6 8
S P M .H .. 6 8
EXAMPLE.CPP ... 69
MODEL.CPP .. 74
MODW IN.CPP ... 84

Appendix C: Sample Screens .. 95
References ... 100

vi

List of Tables

Percent of Time in each Phase .. 7
Error Rates ... 9
O bject M odel vs. COCO M O 29
W aterfall vs Prototype Paradigm .. 31
Homogeneous vs Non-Homogeneous Resource Example ... 33

vii

List of Figures

W aterfall Development Process ... 6
General Error Model .. 8
Com m unications Overhead ... 12
Productivity vs. Burnout ... 14

Model Class Hierarchy 18

W indows Class Hierarchy ... 22

Sam ple W aterfall Model .. 24

Initial Model Display .. 26
Running Model .. 27

Com pleted Project .. 28

VYii

Problem Overview

The challenge of developing software on-time and within budget has grown exponentially

over the past ten years, mirroring the exponential growth in size and number of software

projects. Of the 500 projects Tom DeMarco has studied, a full 15% produced nothing. Of the

projects of 25 or more person-years, 25% failed. 1 The complexity of managing the development

of a large software project requires more efficient tools for planning and controlling the software

development process.

Tyves of Planninq Tools

Empirical or Traditional Tools: Current project management tools make empirical

estimates of time and manpower to complete a project based largely on the size or number of

functions in the project. These estimates are often based on statistical studies of historical data

collected from a number of projects. This group of tools includes such popular planning tools as

Barry Boehm's COCOMO estimation model, 2 and the Putnam Estimation Model. 3 These models

have limitations in that they do not take into account variables that may change with time

including management decisions, new requirements, errors generated, and the state of the work

force. The empirical modeling approach will not be discussed in great detail here. For a

complete discussion see Pressman's Software Engineering book.4 These tools are widely in use

today, and most software managers have used at least one of these tools in software

development.

o Dynamic Modeling Tools: The dynamic software process model differs from the

empirical in that it attempts to model the behavior of the development process over time. This

type of modeling is based on the System Dynamics techniques developed by Forester and

others at the Sloane School of Business at MIT.5 These models use a system of linear

differential equations to determine the interactions between the people, process, and work

D I NINNIN n u u nln amlNlmnmn~•Jnm• •r-

accomplished. The first major application of this modeling technique to the software process

was done by Abdel-Hamid and Madnick. 6 They developed a software process model using the

DYNAMO modeling language to model the tradeoffs in manpower, errors and work completed in

a typical development process.

In 1991, the Charles Stark Draper laboratory began a research and development project in

dynamic software process modeling. This Internal Research and Development produced

Drapers Software Process Model. 7 The Draper Software Process Model expands on the work of

Abdel-Hamid and Madnick by incorporating a number of additional factors and effects. The

Draper Process model uses the same system dynamic principles as the Abdel-Hamid model, and

is implemented in a graphical modeling language called STELLA.TM The Draper model will be

used as the basis for comparison when evaluating the new object-oriented approach to modeling

described in this thesis.

* Object-Oriented Dynamic Tools: The main purpose of this thesis is to describe a new

object-oriented approach to dynamic modeling. This approach uses an object-oriented structure

and programming language to implement a dynamic model of the software process. This model

uses the same System Dynamics principles as the dynamic software process models described

above, but the model is implemented in an object-oriented language rather than currently

available modeling languages like DYNAMOTM or STELLATTM . The main advantage of this

approach is a large increase in flexibility when modeling other types of processes.

Limitations of the Draper Software Process Model

Draper's approach to implementing a model c' the software process used a graphical

modeling language tool called STELLATM to model a waterfall software development process. 8

A fairly sophisticated system dynamics model was built using STELLATM to model production,

error creation, the state of manpower, and a number of interacting effects. This prototype model

2

expanded greatly on the work of Abdel-Hamid by explicitly detailing error feedback effects in

each phase, incorporating additional productivity factors, modeling phases in the waterfall

individually, and allowing a manager to make decisions interactively during a modeling session.

This prototype model has met with some success as a training and planning tool. One of the

Draper model's major limitations, inherent in the use of current modeling tools like STELLATM, is

that the process model is not particularly flexible. To apply the model to a Spiral or Incremental

process for example would require rewriting the model. Even a simple task like modeling two

different development teams would require major changes to the model.

Further, the original model implementation is limited in the types of resources it can easily

represent. It would be very difficult to distinguish the separate skills of different groups of

people. It is hard to model the differing abilities of people who do analysis, programming, design

and testing, for instance. Using current modeling tools, a different manpower subsystem would

need to be implemented for each group of specialist.

While the model is excellent for modeling the traditional waterfall life-cycle project, done by

a homogeneous group of workers, it is very difficult to model any other type of process done by

non-homogeneous workers.

Key Obiect-Oriented Concepts

A number of key features of object-oriented languages make an object-oriented approach

appropriate for modeling. These include:

* Data Abstraction. Each class in an object oriented language may be used arbitrarily as a

data type much like integers or character strings are used in non-object oriented languages. In

modeling, this allows a modeler to define abstract types to represent modeled entities.

* Data Hiding. Objects may be treated as black boxes with defined interfaces. The internal

data members and implementation can be hidden from the user. This allows a modeler to use

3

an object without worrying about internal implementation details. This significantly eases the use

arnd reuse of objects.

* Inheritance. Inheritance is a property that allows objects to be built from other objects.

The advantage is that a modeler can inherit all of the properties of an object, and then either

modify or add to its properties and behavior. This allows a modeler to build a hierarchy of

objects from simple to more complex without re-implementing common features. A modeler can

eventually develop a library of common modeling objects that can be used or reused in new

models.

* Messages. Objects communicate via messages. A message is essentially a command

that one object sends to another. A message is an abstract command. This process is

conceptually similar to a function call, but objects need not respond in the same way to the same

message. For example, the user might send a message to tell some modeling objects to step

forward one time step. The objects might respond to this message in different ways depending

on what is necessary for them to step forward one time step.

* Methods and Member Functions. An object contains both an abstract collection of data

and the methods that the object performs. These methods are implemented as member

functions for the object. Since different objects may have different member functions associated

with them, they may behave differently. Using inheritance we can make two objects behave in

different ways to the same message. For example, a Task object and a Resource object in the

model can both process a step() message, but the two objects will have vastly different

behaviors when they receive that command.

Anticipated Advantages of OOPS Method

To overcome the limitations of current modeling tools outlined above, a prototype of a

software process model in the C++ object-oriented language was developed. Using an object-

4

oriented language allows greater flexibility in adapting the model to different development

processes.9 Specifically:

"* Process objects can be defined and assembled in an arbitrary order, letting one model the

traditional waterfall life cycle model as well as many other software development

paradigms.

"* Process objects can be derived from other process objects using inheritance. This allows

us to define new process elements with minimal work.

"* Resource objects can be defined generically, allowing us to model manpower as well as

other development assets. New resources can be defined by inheritance directly from

these base resource objects.

"* Groups of resources with distinct capabilities can be modeled. In particular groups of

manpower that have different capabilities (i.e. analysts, programmers, testers) can be

modeled with different productivity factors for each task.

"* Resource allocation strategies can be modeled and evaluated. Groups of resources can

be assigned to tasks in a multitude of ways. With the object-oriented model one can

explore different allocation strategies and their impact.

Process Features

To model the software process, extensive research was conducted to determine the

essential characteristics of the process. The research done for the original Draper Software

Process Model10 as well as Abdel-Hamid's'1 model were drawn heavily upon to develop the

object-oriented model.

IS

The Waterfall Software Process

The starting point for the design of the object-oriented model was the traditional waterfall

process as specified in Miu-Standard 2167A.12 From the standard waterfall process we selected

a simplified waterfall process to use as a basis for the model. The simplified waterfall process

with error feedback is shown in Figure 1.

SRequirements -

Design Production

Error FeedbackTetn

Figure 1

Waterfall Development Process

The waterfall diagram represents a portion of a traditional software development life cycle.

Production flows from requirements, to design, coding and testing. Errors discovered in later

phases are returned to earlier phases to be reworked. The selection of phases was made largely

to facilitate calibration of the model. However, using object-oriented techniques, new tasks may

be dynamically added to the model to duplicate other development paradigms.

Productivity

Normal production is modeled in the task object. Productivity is determined by the nominal

productivity of the individual resources applied to a project. The nominal work rates for a project

were determined initially by research from a baseline of 10 linestday per person based on the

reference Software Metrics.13 This rate was subsequently adjusted during model calibration to

6

reflect COCOMO productivity rates and modeling effects. The final calibrated rate used was 13

lines/day.

Each resource object has productivity objects associated with it for different tasks. In the

general model, each resource is assigned a productivity rate based on the overall nominal rate

described above. It is possible to assign different resources unique productivity's to reflect

individual talents. Also productivity of a resource may be affected by other factors such as

overtime and schedule pressure. These are discussed further in the section on Resource

Attributes.

Productivity by Phase

The nominal productivity in the sample model is divided among the different tasks in the

waterfall to determine individual task productivity's. The baseline figure of 13 lines/day

represents overall productivity for the process. This overall productivity was divided out for the

four tasks in the waterfall process. The following table illustrates the time breakout for a typical

project. Grady-Caswel114 estimate Requirements: 14.8%; Design: 20.1%; Coding: 37.4%; and

Documentation: 27.7%. In our model we rounded these figures to arrive at the following

breakout (Table 1)

Table 1
Percent of Time in each Phase

Phase % of Time
Requirements 15%
Design 20%
Coding 40%
Testing 25%

Process Rigor

A unique feature borrowed from the Draper Software Process Model's is the notion of rigor

in a development process. The idea behind rigor is that there is a subjective measurement of

the degree to which a manager maintains rigorous development and testing process. For

7

example, if a development process is done ad-hoc, it is considered non-rigorous. Conversely if

a development process is first carefully planned, requirements are documented in detail, and the

code faces regular reviews and verification, we consider the process rigorous. It is assumed

assertion that less rigorous processes generally speeds the process but leads to more errors.

Conversely a more rigorous process takes more time to complete but produces less errors.

In the object-oriented model each productivity object has a rigor variable associated with it.

Managers may adjust the rigor for each resource productivity to reflect individual resource

abilities. A rigor value of 1.0 is considered nominal, with 1.5 corresponding to roughly 2/3

nominal productivity and 2/3 the nominal error rate. Conversely a rigor setting of 0.5 will result in

roughly double the productivity and double the error rate.

Error Modeling

A critical feature of the object-oriented software process model is the explicit tracking of

errors. The following system borrows heavily from the Draper Software Process Model which

uses a very similar process for explicit error creation and detection. 16 A causal diagram for the

error and error detection process is shown in Figure 2. As shown, errors are created during a

production stage, and removed by error discovery in subsequent phases.

Undiscovered Errors

Errors Discovered Later Errors Made
Causes Rework

Work from -- Work In Process . _ Work Done
Previous Task this Task this Task

Figure 2
General Error Model

8

Since this system is duplicated for each task in the system, errors are explicitly tracked for

each phase in the software process. Error creation occurs linearly, by multiplying the resource

error rate by the amount of work done. Using a resource error multiplier allows us to better

distinguish between skilled and unskilled resources. Error rates were derived using a pre-testing

average of 50 Errors/KDSL (KDSL= thousands of lines of delivered source code) from Boehm,17

Grady and Caswell,18 and Abdel-Hamid's 19 figures as input. The following error creation rates

were used in model calibration and testing (Table 2)

Table 2
Error Rates

Phase Percent of Errs Errors/KDSL
Requirements 18% 9.25

Design 52% 26.0
Coding 30% 15.0

Error removal and rework depends on the percent of errors detected in later phases. Since

no phase detects 100% of errors, residual errors are a major output of the model. Further this

system, through rework, accurately simulates the growth in project effort and size as errors are

discovered and reworked later in the project. In essence, errors feed back into the system for

correction as they are reworked.

An error is defined as "any flaw in the specification, design, or implementation of a

product."20 Default error rates may be set in the main module (EXAMPLE.CPP) for any resource.

These default error rates are typically modified by the resource to factor in resource state

information such as level of workforce burnout. Similarly, error detection may be adjusted both

by adjusting the percent of errors detected in each phase and the error rework multipliers for

each phase in the same way.

Effort Estimation

An important feature of the model is the effort estimation system. This system tries to

determine how many resource-days of effort are needed to complete the project based on

9

current productivity rates and work waiting in all tasks. This estimation gives the user an

estimate of how well the project is doing relative to a fixed schedule or budget, and also is used

to calculate schedule pressure effects on the workforce (described under Resource Attributes

below). This estimation is conceptually similar to Abdel-Hamid's work estimation system,21 but

in this model the estimation is explicit for all tasks in the model.

The estimation used in this model is a straightforward division of work that is waiting by

current productivity rates in all tasks. Errors accumulated in each task are not included in the

estimation. This reflects the fact that many managers do not include error estimates in their

work estimates, because they are largely unknown to the manager.

The fact that Task objects in the model may apply conversion rates to work as it is done, and

the fact that one Task may send its output to multiple Tasks in parallel complicates the work

estimation process. Fortunately, a Task object can simply call the work estimation member

functions for its list of next tasks to get an estimate of how long work in this task will take to

complete. Since each Task's estimation function then calls the estimation function for its next

tasks, the work estimation will mirror the actual work list, and produce an accurate estimation. If

we repeat this process for all Tasks with work waiting in them, we get an accurate picture of the

overall effort required to complete the project.

Resource Attributes

Since manpower is the primary resource in software development, this section will focus on

the People class attributes rather than the general Resource class. Though the Resource class

provides a generic framework for modeling other types of resources, the emphasis here is on

manpower.

10

Resource Allocation

The model allows many instances of the same Resource class to be attached to a single

process. This lets one flexibly model multiple work groups and their allocation to the tasks at

hand. Since each resource can have unique attributes with respect to each task, it is relatively

easy to model groups with varying ability, specializations, and attributes.

In our particular implementation, allocation is recorded in an Allocation object. Allocations

link the resources to the tasks they work on. Each time step, these allocations are assessed and

adjusted by the model's AllocateO member function. Since this function can be overridden using

inheritance, it is possible for new models to be defined with alternative allocation strategies.

Currently the Allocateo function does an iterative allocation based on average work waiting

for each task. The allocation function does the following: First, the average productivity for each

task is estimated and used to determine the number of resource days required for each task.

Next, for each resource, the function allocates resources based on the number of resource days

required for each task the resource can perform. Finally, actual Allocation objects are created

based on the allocations made. Other allocation schemes are possible. like allocating on an

ability basis or even first come first served. This particular algorithm was chosen because it was

similar to that which is used in the Draper model. Since we wished to do a direct comparison

with the Draper model, this allocation scheme seemed most appropriate. Exploring the effects of

allocation algorithms on the project was left as an open subject for future research.

Workforce Turnover

Any project of moderate length general has turnover in its workforce. Reasons include

quitting, reassignment, and retirement. According to Abdel-Hamid, turnover in many software

projects can run as high as 34%.22 Our model defines turnover in terms of average retention

time. Each People object has a retention time attribute which may be set when an object is

11

instantiated and adjusted during a run. As the model executes, the number of people in the

resource is divided by the average retention time to determine the losses for a given step.

Communication Overhead

Probably the most significant factor affecting workforce productivity is the degree of

communication overhead. The more people involved in a project, the more overhead

experienced. This is because adding one person to a project increases the number of possible

communication paths by the number of people already on the project. This means that overhead

initially goes up as the square of number of people. Clearly this effect is bounded at some point,

or large organizations would get no work done. We estimate the peak overhead to be

approximately 60% of total work done. A graph of the relationship is shown in Figure 3. The

communication overhead is factored into the productivity of each People object based on the

total number of people assigned to the project.

Conmmnications Overhead

60% -

40%.

Overhead 30%,

20%

10%
0%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
People

Figure 3
Communications Overhead

Training Effects

Often a project has a group of trainees. One of the principal advantages of the object-

oriented approach to modeling is that groups of trainees can be modeled easily as separate

12

People objects. It is a well documented fact that trainees have lower productivity than

experienced workers. Abdel-Hamid places the actual productivity of trainees to be between 0.33

and 0.5 that of an experienced worker.23 To allow for variations, we implemented a simple

system where the modeler can set both the initial productivity level and the average training time

for an object. Each time step the productivity of the object is increased by the difference

between 1.0 (full productivity) and the current training level divided by the average training time.

This has the effect of slowly raising the productivity of the trainees over the average training time

until they reach full productivity. Groups with different training periods may be modeled as

different objects. This simple scheme is similar to Abdel-Hamid's approach to training, but our

object-oriented approach allows for differences in the training of different work groups.

Overtime and Burnout

When people work an extended period of overtime, productivity and quality generally suffer.

While such effects are minor for short periods, extended periods of overtime do have significant

effects. This model uses a detailed overtime and worker burnout system based on Abdel-

Hamid's work24 as well as the Draper Software Process Model. 25 The assertion is that

productivity falls and error generation increases as workers suffer the physical and emotional

effects of extended overtime.

The implementation of these burnout effects is fairly straightforward. A variable keeps track

of the percent of burnout for each People object. A second variable is used to indicate hours

worked per week. As a workweek exceeds 40 hours per week, small amounts are added to the

burnout value each time step in proportion to the level of overtime. As this burnout level

accumulates, it is used as a factor in reducing productivity as shown in Figure 4 below. This

lowering of productivity offsets the positive productivity effects of overtime. Further, as burnout

increases, it is used as a multiplier in error generation. Though overtime initially adds to

productivity, burnout will increase over time and eventually hurt both productivity and quality. In

13

the absence of overtime, the model reduces the burnout level so that workers freed from

overtime will eventually return to their original productivity. Currently the time to burnout at a 60

hour workweek is set to 50 work days, and the burnout recovery period is set to 60 work days.

100%

Productivity

70%
0% Percent Burnout 100%

Figure 4
Productivity vs. Burnout

Schedule Pressure vs Productivity

Another well documented worker phenomenon is that schedule pressure can increase

workforce productivity. Abdel-Hamid attributes this effect to the fact that workers gernrally have

a certain amount of free or social time as part of their regular work day.26 As pressure to

perform increases, workers tend to spend less of their workday on social or personal activities

and more time doing work. Sensitivity research done on the Draper model indicates that up to a

10-20% productivity gain can be observed. 27 In the model this productivity gain is modeled

based on the estimated and actual mandays remaining in the system. From these manday

estimates, the number of additional people to complete the project can also be estimated. This

manpower shortfall is used as a basis for the modeling the productivity gain. The model will

increase productivity due to schedule shortfall to make up for the shortfall until the limit of 20%

additional productivity is reached.

14

Class Hierarchy for Model
Model Desiqn

To develop a comprehensive object-oriented model for software development, a

straightforward object-oriented design is used. At the highest level, modeling objects can be

categorized as Resources, Tasks, and Allocation objects. These three classes represent

physical resources, tasks, and allocation of resources in the development process. The common

data elements in these three main objects led to formation of the Value class, the Base class,

and the NamedBase classes shown in Figure 5. These classes are used primarily to maximize

inheritance for the common elements in subsequent classes.

One advantage of object-oriented modeling becomes clear in this organization. Object-

oriented languages have complete support for data abstraction. This feature is sorely lacking in

current modeling tools. Where a traditional dynamic model might represent a task or resource

as a aggregate group of variables, the object-oriented modeler can organize the model to

represent real physical entities. Further, since the interfaces to an object are well defined in

terms of its member functions, modeling objects can be developed independently. A traditional

model is typically developed with global equations. An object-oriented model can be developed

to take full advantage of data abstraction and data hiding.

Inheritance is also fully exploited using object-oriented modeling. The Resource, Task and

Allocation classes all have common roots back to a simple data Value class. Further specific

classes can be derived from more general classes. An example of this is shown in the derivation

of the People class from the more generic Resource class. This leads to a high degree of reuse

in the model.

A final advantage that was exploited in this model is the dynamic creation of objects. C++

allows one to create multiple instances of the same object. Thus, separate tasks in a project

(requirements, design, coding, testing) are instances of the same Task class. Similarly multiple

15

resources are instances of the People class. This gives tremendous flexibility in adapting the

model to new processes without modifying the underlying classes.

Overview of Model Classes

Class Definitions

The object-oriented software process model class hierarchy is diagrammed in Figure 5.

Classes are described fully in Appendix A. The code for defining the classes is contained in

Appendix B.

Model Class Hierarchy

The class hierarchy for the model was derived from the standard class library for the Borland

object-oriented C++ compiler.28 These standard classes are all derived from a single abstract

base class called Object. The standard class library has many useful data structures pre-defined

and implemented, letting us form abstract data structures without implementing them from

scratch. For example, if we need an array of Task objects, we can define an Object Array and

place our Task objects in it since the Task class was derived from the common Object class.

The standard library has arrays, hash tables, dictionaries, strings, bags, ordered arrays, and

many more objects that can be used to store our objects. Figure 5 illustrates the class hierarchy

for the model. In Figure 5, standard library objects are shown in Italics.

The root class for our derived model is a class called vaiuf The Value class is used to

represent a single variable in the model. The Value class hq r ;nitial value, current value, and

a rate of change value. Value objects can be initialized, calculated, stepped, and restarted. The

class is fully specified later in this document.

An Allocation class is derived from the Value class. This object represents allocation of a

particular resource to a particular task Allocations are recalculated each time step, as resources

and tasks change. This class is detailed below.

16

The Base class is simply a Value object with an additional Type data member. The Type

data member is used to represent the type of resource (people, machines, etc.) or task

(Requ'rements, Design, Testing, etc.) represented by the object. The Prod class is the only class

derived directly from the Base class. Prod objects are attached to each Resource to represent

the nominal productivity of that resource on a particular type of task. Prod objects represent the

nominal productivity as well as the nominal error rates and nominal error detection rates for a

particular task. A Rigor level can also be associated with a Prod object to represent the rigor

with which the resource approaches the assigned task.

The NamedBase class is used as a base for remaining classes. The NamedBase class adds

a Name data member and unique ID identifier to the base class, letting us uniquely identify a

particular task or resource. This allows two task objects of the same type (perhaps two testing

objects) to be distinguished. The Name data member is used in reports on tasks and resources.

The Task, Resource, and Model classes are all derived from the Named base class. Each is

a fairly complex object, fully detailed in the Class descriptions in Appendix B. From the

Resource class, the People class is derived, which adds effects such as communication

overhead and overtime bumout to the abstract resource definition.

17

Object

Sortable

I

Value

B ase I F Alocaton

(NamedBase J
S Task Resource l [Model -J

[People]

Figure 5
Model Class Hierarchy

Value Class

class Value: public Sortable; - The Value class is used as a root class for the model. It

represents all time dependent values in the model. Each Value object can be reset to its initial

value to restart the simulation. Each time step the calculateo member function is called to

calculate the value for the next time step, then the stepO member function is called to actually

step to the new value.

Base Class

class Base: public Value; - The Base class is an abstract class used by later classes to

identify a particular resource or task. The Base class inherits all of the functions and data

18

members from the Value class and adds a new data member called type. The type is used

identify a particular group of resources (i.e. people) or a particular task (i.e. requirements work)

in derived classes.

NamedBase Class

class NamedBase: public Base; - The NamedBase class inherits all of the data and

member functions from the Base class and adds a unique identifier called Id as well as a Name

for the object. It is an abstract class used to develop tasks and resources.

Productivity Class

class Prod: public Base; - The Rod class is used to define a resource's productivity for a

particular task. Several productivity's are associated with each resource, defining that particular

resource's base productivity for accomplishing a particular task. For example a group of

programmers might have productivity's associated with the requirements, design, coding and

documentation tasks. This class is derived from the Base class, so the value of the productivity

as well as the task type are inherited directly from the base class.

Task Class

class Task: public NamedBase; - The Task class forms the basis for the production

system. A task is any phase of the production process. Tasks can be chained together so that

the output from one task becomes the input for another task. The main Value data member for

the task keeps track of the work still to be done. Separate Error and ConversionRate data

members are maintained to keep track of errors for this task and the conversion of work as it is

processed.

19

Allocation Class

class Allocation: public Value; - The Allocation class is used to keep track of allocations

of a particular resource to a task. Allocations are made each time step by the main model, and

management of allocations is done by the main model class. The allocation objects simply store

the resulting allocations. The class is derived from the Value class with the main Value

specifying the number of resources allocated.

Resource Class

class Resource: public NamedBase; - The Resource class defines a generic resource and

allows the user to attach productivities for different production tasks to the resource. Each

resource has a name, type, and array of productivities for different tasks. Resources are derived

from the NamedBase class with the main Value used to keep track of the number of resources

available.

People Class

class People: public Resource; - The People class is derived from the generic resource

class and inherits all resource characteristics. In addition the People class adds communication

overhead and overtime effects to People resources.

Model Class

class Model: public NamedBase; - The Model class represents a model of a complete

project including all tasks and resources assigned to it. Stepping the model forward in time

effectively steps all of the objects associated with the model forward in time.

20

Class Hierarchy for Windows Displays
Overview

Class Definitions

The windows class hierarchy is shown in Figure 6, and described in the sections that follow

the figure. Complete descriptions of the data members and member functions for the hierarchy

is in Appendix A. Code for defining the hierarchy is in Appendix B.

Window Class Hierarchy

In additioh, to the Model classes, several Windows classes were derived from Borland's

ObjectWindows TM library29 to produce a primitive Microsoft WindowsTM interface.3° While the

interface currently produces only simple tables and graphs showing values of key variables, it

could easily be extended to allow the user to input variables much like the MicroworldsTM

interface lets us interact with the current software process model. 3 1

The hierarchy is derived from the TWindow and TFrameWindow classes defined as part of

Borland's ObjectWindows library. Borland library classes are shown in italics on the class

hierarchy diagram, Figure 6. The TWindowFrame class provides a multi-document window

suitable for displaying several subwindows and a menu. The TWindow class is then used to

derive the sub-windows for the model, with each window displaying information about a particular

portion of the model. GraphWindows also use two small classes called GPoint and Graph used

to store the data necessary for a graph.

21

TMDIFrame

(w er

_Tnindow .d

CControlWindow Takindow Resourc~ o fAllocato~n

GraphWindow u aryWindow

Figure 6
Windows Class Hierarchy

ModelViewer Class

class ModelViewer: public TMDIFrame; - The ModelViewer class forms the main multi-

document windows class for the model. This class handles requests from the user (menu

commands) and serves as a backdrop for the other windows.

ControlWindow Class

class ControlWindow: public TWindow; - The ControllWindow class displays a small

window with four buttons on it. The buttons allow a user to step, restart, run continuously, and

quit from the model. Pressing the corresponding button results in a message being sent to the

main ModelViewer window where it is processed.

TaskWindow Class

class TaskWindow: public TWindow; - The TasklWindow class displays a list of all task

names, the work to be done, and the errors generated for each task associated with a model.

22

ResourceWindow Class

class ResourceWindow: public TWindow; - The Resource window displays the name of

each resource associated with the model along with the number of resources. The display is

updated with each time step.

AllocationWindow Class

class AllocationWindow: public TWindow; - The AllocationWindow shows a list of all

resource allocations currently active in the system. For each it shows the task the resource is

allocated to and the number of resources allocated. The display is updated as the model is

stepped.

SummaryWindow Class

class SummaryWindow: public TWindow; - The Summary Window shows a report of the

key outputs of the model including mandays expended, size of project, and errors per thousand

lines of code. The display is updated as the model is stepped.

GPoint Class

class GPoint: public Sortable; - The GPoint class is a simple class used to store points for

a particular Value object in the model as the model is run. These points can then be displayed in

a GraphWindow.

Graph Class

class Graph: public Value; - A Graph object represents the storage of a single Value object

over time. Graphs are ultimately displayed as single data series lines on GraphWindows.

GraphWindow Class

class GraphWindow: public TWindow; - The GraphWindow class simultaneously displays

multiple Graph objects in a window on the screen. This class takes care of drawing and scaling

multiple data sets on the same graph.

23

Sample Model Structure

The sample model was created to demonstrate the capability of the new model as well as

create a baseline for comparison v O)rapers model and Boehm's COCOMO model. The

sample model is structured as shown in Figure 7. Complete code for creation of the model is

attached in the Appendix B as file EXAMPLE. PP.

SModel Class TestinI

SCodingl

Waterfall Tasks
Tasks Array Requirements

Resource Array People Poutvte

Allocations f o i ons

Array Allocations

Figure 7

Sample Waterfall Model Structure

The waterfall model shown above closely duplicates the structure of the existing Draper

STELLATM model. However this new model could easily be extended to include more advanced

structures. For example, by adding only a few lines to the EXAMPLE.CPP file one could create

a second People object and populate it with specialized productivities. This might be used to

model the role that a group of requirement and design specialists take in the process. Assuming

the same model definitions and variables defined in EXAMPLE.CPP, here's the code for adding

a second set of people that specialize in programming but do not do design well. Results from

running this example are included in the section on Calibration and Testing later in this thesis.

24

#define PROGRAMMERS 101 I/Unique resource type for new specialists

H Create new requirements people with seven specialists in the group

r = new People(m, "Programmers", PROGRAMMERS, 7.0, WILLUSEOT);

I! Make these new people specialize in programming by adding
/to the programming ability and reducing the design productivity.

HI Make them do programming twice as fast and design half as fast

r->add(* (new Prod(REQUIREMENTS,RQTSRATE,RQTSERRRATE,
RQTSERR_MULT)));

r->add(* (new Prod(DESIGN, DESIGNRATE*.5, DSGNERRRATE,
DSGNERRMULT)));

r->add(* (new Prod(CODING, CODERATE*2.0, CODEERRRATE,
CODEERRMULT)));

Similarly if we wished to extend the waterfall to include initial requirements research or

system integration, we need only know the relative productivity and error rates for these

processes. We would create new Task objects for the new processes, add productivities to the

appropriate resources, and chain the new tasks to the current tasks. More complex productivity

models could be developed where the process forks into two production lines and then rejoins at

some future production phase, since the generic Task object can easily send its output to more

than one other task.

25

Sample Output

Below are several screen shots of different windows from the prototype object-oriented

model running under Microsoft WindowsTM version 3.1. Additional examples are in Appendix C.

Figure 8 shows the model in its initial state. There are 13.6 people (Resource Window)

assigned to the sample model, with 32K waiting in the requirements task queue. The control

panel with the step, quit and restart buttons is seen in the lower right comer. Total mandays

expended is currently displayed in the summary window just to the left. All graphs are in their

initial state.

Efle Edit Model Window Help

Work Done Tasks -
Re quirements 32.00

30, Jequir eslgn O.0.00
Uein rodlng 0.00Coding oestlg

Testing ark Done! 0.9 •20 •-.]~

Errors Graph

Requirements Errs10, 300 - Ve!A•q$-- -;'-'

Code Errs

200-
0

0 160

Sumayople 13.60 i
lime

andays 0.0O 0 Control .

oze 32.000000 KDSL:rr11s 0.000000 Errm/K SL •••••:•" "'<' .i:• • •.-..,:••'--".' ••:'•':":•': ..

Figure 8
Iniial Model Display

26

Figure 9 shows the model after it has stepped 200 days into the project. The Tasks window

displays the work waiting in each task. The W/ork Done and Errors graphs show graphically the

work being done and errors accumulating and being discovered in each task. The Summary

window provides a summary of key project outputs.

Elle Edit Mo~el Window Help

Work Done Tasks
I equlrements 0.51

30 Requirement ,esign 2.49
D•o .eding 4.79
Coding Testing 6.38

20 hork Donel 23.00
Errors Graph x.b

S.... r ORequirements Errs
10 300 - Eres

Code Errs

0200

0 160 t0oo

0
Summary l ' 0 160 320

Fime 200
andys 2706.40. 2
ize 37.162566 KI)SL
Ensfs 15.508619 Errs9XrJSL Wad 4

A .bnof PeoWWceS BU.ru Ite•me Day 200

Figure 9
Running Model

27

Figure 10 shows the model at the completion of this 14 month project. The tasks are all

completed, as all work currently resides in the Work Done! task. Residual errors for each task

are displayed in the Errors graph. The summary window shows that 3549 mandays were

expended on this original 32K project.

File Edit Model Window Help

Work Done Tasks
S r e ulquirements 0.00

30 ! 3 es'gn 0.00
Li'sig Ifoding 0.00

es- 1Coding reating 0.00
ItWnq rk Donel 39.24

, I

0 160 100 -,

O1 ' _

0 160 1020
iit Summary 16ISO 320]

Tie 320

andays 3549.60Cor '

ize 39.241291 KDSL

I'M 10.822528 Errs/KDSL 12

ionts Burno Day 320
Resouyces

Figure 10
Completed Project

28

Model Calibration and Testing
Comparison with COCOMO and Draper Model

The completed model was set up to mirror the waterfall process as shown in Figure 1 earlier

in this paper. Task objects were created to model each of the phases of the waterfall (i.e.

requirements, design, coding, testing). Similarly a single People object was created, with

nominal parameters, to model a homogeneous workforce. The automatic overtime feature was

turned on for this group, but workforce attrition was turned off so that the workforce level would

remain constant for the life of the project. Some initial model calibration was done to bring

productivity in line with intermediate embedded COCOMO 32 for a 32K line project, resulting in a

final productivity rate input of 13 Lines/day overall. COCOMO was chosen as the baseline,

because it is one of the most widely used estimation models in the software industry.

Next the model was run over a wide range of projects, using the intermediate embedded

COCOMO as a guideline. The COCOMO model provided the initial schedule and manpower

estimated based on project size. Using these schedule and manpower settings, the model was

run for project sizes ranging from 16 K to 1024 K lines, and resulted in the following comparative

results. (Table 3)

Table 3
Object Modiel vs COCOMO

COCOMO Object-Oriented Modd
Size (KDSL) Schedule Manpower Mandas Model Mandas Pct Diff

16.0 201.6 7.7 1,560.0 1,555.4 -0.29%
32.0 263.0 13.6 3,584.0 3,549.6 -0.96%
64.0 343.3 24.0 8,233.9 8,208.0 -0.31%

128.0 447.9 42.2 18,916.5 18,905.6 -0.06%
256.0 584.6 74.3 43,458.6 42,573.9 -2.04%
512.0 762.8 130.9 99,841.7 98,567.0 -1.28%

1,024.0 995.4 230.4 229,376.0 227,865.6 -0.66%

29

As evident in the results, the dynamic object oriented model performed very well over a wide

range of project sizes, with an average deviation of -0.80% from COCOMO. This striking

accuracy mirrors results from Draper's software process model, which consistently comes within

1% of COCOMO over the same project range.33 This degree of accuracy is really quite striking

when we compare the methods used. COCOMO is simply an exponential curve fit to a database

of existing project data, with some linear work multipliers factored in. The object-oriented

software process model, however, is a time-dependent simulation of a development process.

What is significant in these results is that one can accurately simulate the non-linear

relationships between resources, task, and time using dynamic modeling. Further, the accuracy

of this object oriented model is very close to that of the Draper model on which it was based.

This fact is further proof that an object oriented model has many of the advantages of that a non-

object oriented model can.

Prototype Paradigm Experiment

As a demonstration of the flexibility of the model, a model based on the fast prototype

paradigm was created and run. A fast prototype is a quick development stage that precedes the

traditional requirements phase. A prototype is developed to help refine the requirements so that

requirements and design of the final product can be done faster and with less errors.34 We

simplified the prototype phases by lumping them as one prototype task. This was done by

creating a new prototype Task object and adding it to the model before the formal requirements

phase. The model was populated with fictitious data using the assumptions stated below. We

could find no reliable study of actual prototype projects to base this on, and decided to make this

a demonstration of model flexibility rather than a test of modeling accuracy.

30

The following assumptions were used in adding a protrtype stage to the traditional waterfall

shown in Figure 1. These are all fictitious, and not designed to represent a real project.

1. All starting requirements were input to the prototype stage.

2. The prototype stage took approximately 15% of the overall project schedule.

3. The prototype stage allowed the requirements and design phases to proceed with half the

error rate that they normally would have because errors were discovered during

prototype.

4. The design phase was sped up from taking 20% of a traditional project to only 13% in the

prototyped project. Similarly, the requirements phase was reduced from 15% of the

project to 7%. Both speedups were due to work that could be taken from prototypes.

5. The prototype stage had error rates comparable to a normal requirements phase.

The intention overall was to make the prototype project and waterfall project be comparable

in overall percent of scheduled time to complete. Though in reality a prototyped project might

take longer to complete, we wanted to normalize the two to determine if the significant reduction

in errors and time to complete the requirements and design phase would overcome the cost and

errors of prototyping. This model is reflected in the final EXAMPLE.CPP file in Appendix B, with

the conditional compile flag PROTO defined.

We used a baseline 32K project, with a 2r-", day schedule and 13.6 people assigned to it, just

as in the original COCOMO calibrations from the previous section. The results are summarized

in Table 4.

Table 4
Waterfall vs Prototype Paradigms

Paradigm Mandays Errors/KDSL
Waterfall 3584.0 10.81
Protoype 3413.6 9.37

31

As shown in Table 4, the prototype model, running with the assumptions made aLove,

proved to be a cost-and-error-saving strategy. Apparently the savings from the prototype stage

did overcome the additional errors and cost of implementing the stage. Please note that this is a

fictitious example, so no real life conclusions should be drawn from it. Still, this example does

an excellent job of underscoring the flexibility of the object-oriented approach. By changing a

few lines in the EXAMPLE.CPP file we were able to add an entirely new phase to the model and

run it. This kind of flexibility is not possible without major changes in non-object-oriented models

such as the Draper software process model.

Multiple Resource Example

As a demonstration of a project with non-homogeneous resources, the model was run with a

second People object of programming specialists, using code described in the previous section

on Sample Model Structure. The scenario used was again a 32 thousand-line project, with a total

of 13.6 people assigned, and overtime allowed. The workforce this time was divided into two

objects. The first object had the same nominal 13 lines/day productivity used to calibrate the

model against COCOMO, and consisted of 6.6 people. The second object had the same

productivity as the first for all but the design and programming specialists and consisted of seven

people. These "programming specialists" worked at twice the default speed during the coding

phase, and only half the normal speed during design. Though this example is fictitious, the

purpose was to demonstrate that non-homogeneous resources do make a difference in model

output.

When the model was run with this additional People object, and the output compared to

model output with a single resource object the following results were obtained (Table 5).

32

Table 5
Homogeneous vs Non-Homogeneous Resource Example

Paradigm Mandays Effors/KDSL
Homogeneous 3584.0 10-81
Non-Homogeneous 3413.6 10.83

Table 5 shows that the project with the homogeneous group of people took longer than the

project with the non-homogeneous mix with programming specialists. The point is not that one is

larger than the other, since the example was fictitious. The main point is that the two are

different. Indeed the difference would probably be much larger if we used a more realistic mix of

specialists in each task and included an allocation algorithm that would take resource skills into

account. However, this limited test did demonstrate that multiple resources with different

specialties can easily be added to the model, and that these resource specialties do affect the

outcomes of a project.

33

Advantages and Disadvantages of the Object-Oriented Approach
Advantages

"* The object-oriented approach allows for easy extension of the Task and Resource

classes. The People class, for example, was derived from the generic Resource class

by simply adding additional productivity and error factors associated with people.

"* The object-oriented approach allows many types of processes to easily be modeled by

simply chaining process objects together in different ways. For example, the waterfall

life cycle model could be extended by adding a maintenance phase after the testing

phase. Doing this using a non-object-oriented model would require almost a full

redevelopment.

"* The object-oriented approach can accurately model multiple resources with different

production abilities. Further, specialized resources (i.e. analysts, programmers,

designers, testers) can be modeled in a way that accurately reflects their specialization.

"* The level of effort associated with tailoring the object-oriented model is significantly less

than with a non-object-oriented approach. Currently someone tailoring the model will still

require a degree of object-oriented knowledge, but that could be overcome if an

interactive model-builder is built. Such a tool would take advantage of the fact that

objects can be created and destroyed dynamically to let a user develop their own models

based on pre-defined classes.

Disadvantagies

* The introduction of resource specialization complicates the problem of effective resource

allocation. While the sample Model class implements one solution by having each

resource allocate to its tasks based on resource days required for the task, the model

does leave open the option of developing alternative resource allocation strategies. This

34

is not a problem for a non-object-oriented approach since it assumed largely

homogeneous resource pools whose productivity was based primarily on experience.

•Implementation of an object-oriented model requires more up-front design and planning.

While traditional models allow global variable access, and unstructured modeling,

object-oriented modeling requires a high degree of organization, with well defined

interfaces between objects. As a result, some initial design work is needed to define an

object-oriented model that is both functional and flexible.

35

Future Directions

The current object-oriented Software Process Model was designed as a proof of concept,

with the focus primarily on the model, and not on the interface. As a result the user interface is

quite primitive. In addition, the research has yielded some new, promising additions that could

be implemented in future research.

Model Enhancements

Areas that could be improved upon include the following:

"* Alternative Resource Allocation Algorithms: While the current implementation does

accurately model the fact that managers generally make allocation decisions at a local

level, many other allocation schemes are possible. A global allocation system based on

worker ability would lead to better overall resource allocation in an organization.

"• Develop Generic Object-Oriented Modeling Tools: One significant outcome of the

research was a realization of the shortcomings of coding objects in a compiled language

like C++. Though an object-oriented model is unusually powerful and flexible within the

range of its usage, it would be nice if there was a language or tool specifically designed

for object-oriented modeling. Clearly C++ and other object-oriented languages are

outside the realm of many modelers capabilities. In theory, an object-oriented modeling

language or graphical tool could be developed to specifically support modeling

applications. Such a tool might have pre-defined objects to represent various modeling

constructs, as well as container objects that let a modeler handle multiple instances of an

object. Separate methods for defining and instantiating runnable object would need to be

defined.

"* Implement and Test Other Development Models: The waterfall development cycle

modeled here and in the original software process model is only one paradigm for

36

software development. We could easily generate other types of models (i.e. spiral, rapid

prototype, etc.) using the building blocks from this object-oriented model. Though we

have prototyped the structure of a rapid prototype paradigm, no industry data was

available to serve as a fair comparison for the model. It would be most interesting to

test these models against actual project data.

Develop Model using Object-Oriented Design Process: Although the final product of

this development effort is neatly organized, clearly improvements could be made in the

structure of the model. It is likely that a modeler familiar with formal object-oriented

design who approached the problem from scratch might take a different approach. For

example, object attributes might better be stored in an array within the object so that

generic restartO, stepo, and calculateO functions can be written. Similarly, one might

want to differentiate between the System Dynamic entities of stocks, flows, constants

and converters, implementing each as a different object. In our model the differentiation

is somewhat blurred as all are implemented using Value objects. The fact that we

heavily used the Draper model for a basis may also have biased our design, since it was

implemented in a traditional unstructured modeling language. Clearly developing an

object-oriented model requires additional effort in planning and design.

Windows Interface Enhancements

The object of this thesis was to focus on the modeling aspects. As a result the windows

interface for the model is very primitive, consisting primarily of simple tables that display critical

model values while the model runs. Several enhancements could be made:

e Improved User Interface: To meet the time constraints imposed by a single semester

thesis, a conscious decision was made to emphasize the model over the user interface.

Though the present model does present informative graphs and tables in an interactive

37

Windows environment, the interface is somewhat awkward and unpolished. Another

entire semester could be spent to design and implement a friendly interface.

"* Control of Decision Values: It would be nice to be able to modify resource and task

variables during a simulation run. This includes both initial project variables and time

dependent decision variables. The model itself does not preclude changing variables in

mid-project, but a full interactive interface must be developed. This would probably be

implemented with popup dialogs for each resource and task class.

"* User Definable Reports, Tables and Graphs: The user needs an easy way to be able to

define their own reports, graphs and tables. This would probably be done from a menu

or control panel selection. Currently the reports and graphs are instantiated in the model

and can only be modified within the code.

"* Saved Variables: The user may want to be able to save the state of the model at any

point so they can come back to that project at a later date. This could easily be

implemented by having each object write its current state to a file.

"• Interactive Model Development: Since models can be created dynamically, it is feasible

that an interactive model-builder could be developed. Such a tool would let the user

choose from a set of resource and task types, assemble them in any order, seed them

with appropriate values, and run the resulting model. This kind of tool would take a

significant expenditure of resources to develop, but would bring the flexibility of the

object-oriented model directly to users who have no knowledge of object-oriented

programming.

38

Conclusion

This first implementation of an object-oriented software process model achieved the

following:

"* Established a base simulation engine for running a system dynamics model in the absence

a commercial modeling language. This model may be stepped and restarted freely.

"* Defined an abstract object-oriented class hierarchy for modeling typical software

processes. This class hierarchy is capable of allocating multiple resource pools to

arbitrarily chained tasks. Neither multiple task pools nor arbitrarily chained tasks could

be implemented using current non-object-oriented modeling tools.

"* Demonstrated the use of object oriented inheritance to derive specific objects from

abstract classes. Defined a specific resource called People from the generic Resource

class definition. The People class adds overtime and communication overhead

multipliers to the generic Resource class definition. The generic Task class could also

be extended by inheritance to include more complicated process elements.

"* Designed, implemented and tested a primitive Microsoft Windows interface to the object-

oriented software process model, including graphical output of key variables.

"* Used the class hierarchy to model a classic waterfall software development. This sample

development (EXAMPLE.CPP in Appendix B) was seeded with nominal productivity

values and run to completion.

"* Made a quantitative comparison between the object-oriented model and Boehm's

COCOMO model, with surprising accuracy. The object-oriented approach achieved the

same high degree of accuracy we have observed in calibration of the traditional Draper

software process model against COCOMO over a wide range of project sizes.

39

"* Made a comparison of the advantages and disadvantages of the object-oriented model

when compared to the current implementation of Drapers Software Process Model using

the non-object-oriented STELLA modeling language.

"* Proposed areas for future enhancements to both the model and the Windows interface.

The object-oriented modeling technique overcomes many of the limitations of traditional

modeling techniques. The high degree of accuracy and flexibility shown in this model makes this

technique a promising new modeling approach for System Dynamics. The results of this project

indicate that further research and development in object-oriented modeling shows great promise

as a more structured technique for modeling complex dynamic systems. This base model can

be extended to provide a more robust and flexible software process model.

40

Appendix A

Class Member Descriptions

41

Model Class Descriptions

Value Class
class Value: public Sortable; - The Value class is used as a root class for the model. It

represents all time dependent values in the model. Each Value object can be reset to its initial
value to restart the simulation. Each time step the calculateO member function is called to
calculate the value for the next time step, then the stepO member function is called to actually
step to the new value.

Data Members
double value; - The current value of this variable for this time step.
double flowvalue; - The value of any flows to be added to this variable for the next

time step.
double startvalue; - The initial value of this variable at the start of modeling. This

variable is reset to this value when the restarto member function is called.

Member Functions
Constructor Value(double v); - Creates a new value with initial value equal to v.
Constructor Valueo; - Creates a new value initialized to zero.

virtual double getValueQ const; - Returns the current value of this variable.
virtual void initValue(double val); - Initializes this value and the startvalue to val.
operator doubleo; - Calls getValueo to return the current value.
void addFlow(double flow); - Adds the value flow to the current value when the next

time step takes place. Used when a variable changes over time (like a stock).
virtual void paintTo(HDC hdc, PRECT r); - Windows function that paints the current

value to a given device context at location specified by rectangle r.

virtual void restart(); - Sets the value back to its initial value (startvalue).
virtual void calculateo; - Dummy function used in inherited classes to perform

calculations for the next time step.
virtual vzid stepo; - Adds any pending flows to the actual value. Effectively steps the

value forward one time step.

Base Class
class Base: public Value; - The Base class is an abstract class used by later classes to

identify a particular resource or task. The Base class inherits all of the functions and data
members from the Value class and adds a new data member called type. The type is used
identify a particular group of resources (i.e. people) or a particular task (i.e. requirements work)
in derived classes.

Data Members
IDTYPE '-,oe; - An integer used to identify the type of task or resource. Used in later

cl-.. ,;es that require ID's.

42

Member Functions
Constructor Base(IDTYPE t); - Creates a new base object with type set to t and an

initial value of zero.
Constructor Base(IDTYPE t, double val); - Creates a new base object with type set to

t and an initial value of val.

IDTYPE getType0 const; - Returns the type data member of this object.
void setType(IDTYPE t); - Sets the type data member to be equal to t.

NamedBase Class
class NamedBase: public Base; - The NamedBase class inherits all of the data and

member functions from the Base class and adds a unique identifier called /d as well as a Name
for the object. It is an abstract class used to develop tasks and resources.

Data Members
static IDTYPE id_seed; - A shared seed used to give each NamedBase object a

unique ID. Each resource and task will get a unique ID number based on this
seed.

IDTYPE Id; - A unique ID for every task and resource in the system. Used to identify a
particular task or resource.

LPSTR Name; - The name of the resource or task. A string.

Member Functions
Constructor NamedBase(LPSTR name, IDTYPE t, double val); - Creates a

NamedBase object with Name set to name, of type t and with value val.

LPSTR getName0 const; - Returns the Name of this object.
void setName(LPSTR s); - This function can be used to rename a NamedBase object.
IDTYPE getld0 const; - Returns the unique Id associated with this object.

Productivity Class
class Prod: public Base; - The Prod class is used to define a resource's productivity for a

particular task. Several productivity's are associated with each resource, defining that particular
resource's base productivity for accomplishing a particular task. For example a group of
programmers might have productivity's associated with the requirements, design, coding and
documentation tasks. This class is derived from the Base class, so the value of the productivity
as well as the task type are inherited directly from the base class.

Data Members
Value ErrorRate; - The error rate associated with this particular resource attempting

this particular task. This is the nominal error rate, still subject to error multipliers
associated with the resource.

Value ErrorOetMult; - The error detection multiplier used in determining the difficulty of
error detection. This multiplier is usually set based on 70% of the project size.

43

Value Rigor; - The rigor with which this resource approaches this task. May be
changed over time using the addRigoro member function.

Member Functions
Constructor Prod(IDTYPE t, double rate, double errrate=0.0, double

errdetmult=le6, double rigor-=1.0); - Creates a new Prod object for task of
type t, with production rate=rate, and error rate, detection, and rigor defaulted or
set to provided values.

virtual double getValue() const; - Gets the effective productivity rate.
double getErrorRateo const; - Returns the current ErrorRate data member's value.
double getErrorDetMult0 const; - Returns the ErrorDetMult data member's value.
double getRigor0 const; - Returns the Rigor data memt., glue.
void addErrorRate(double v); - Increases the error rate ai ihe next time step.
void addErrorDetMulh(double v); - Increases the error detection multiplier at the next

step.
void addRigor(double v); - Increases the rigor value at the next time step.
virtual void restarto; - Sets all values back to their initial value (startvalue).
virtual void calculateo; - Calculates the productivity values for the next time step..
virtual void step); - Adds any pending flows to the actual values. Effectively steps the

values forward one time step.

Task Class
class Task: public NamedBase; - The Task class forms the basis for the production

system. A task is any phase of the production process. Tasks can be chained together so that
the output from one task becomes the input for another task. The main Value data member for
the task keeps track of the work still to be done. Separate Error and ConversionRate data
members are maintained to keep track of errors for this task and the conversion of work as it is
processed.

Data Members
Model *model; - The model this task is attached to. The task calls the addTasko

member function of this model on startup to attach itself to this model.
Array *NextTasks; - This task will send its output to each task in the NextTasks array

by calling their addWorko member functions. Tasks can be arbitrarily chained
together in this way so that the output from one goes to several tasks or the
output of several tasks goes to one particular task.

Value Errs; - This value maintains the total errors for this task.
Value ConvRate; This value stores the conversion rate for the task. This conversion

rate is used to convert input units to output units. The default is 1.0.
double ResDays; - This is a temporary value used during resource allocation. The

allocator calculates the number of resource days required to finish this task and
stores the value here. The allocator then allocates resources to each task based
on the resource days required by that task.

Value ErrReworkMult; - The error rework multiplier. Discovered errors are multiplied
by this multiplier to determine the amount of work needed to correct an error.

Value PctErrzDet; - The percent of errors from previous phaser that may be detected
in this phase. Used to determine error discovery for previous tasks.

Value WorkDone; - The amount of work accomplished on this task for the current
phase. Used to determine work estimates in the next time step.

44

Member Functions
Constructor Task(Model *mod, LPSTR name, IDTYPE type, double work, double

errreworkmult=0.0, double pcterr det = 0.0); - Creates a task with name
and type specified and assigns work to this task. The task is attached to the task
list for the model specified. The ErrReworkMult and PctErrsDet values are set
based on the corresponding inputs to this function.

-Task(; - Destructor that deallocates the task when the model is done.
Array *getNextTasks0; - Returns the NextTasks data member.
double getConvRateo; - Returns the value of the ConvRate data member.
virtual Value *getErrors0; - Returns a pointer to the Errs data member.
double getResDays(; - Gets the number of resource days required for this task.
void add(Task &t); - Adds a new task to the NextTasks member, so that output from

this task will go to the tsk specified.
void addWork(double w); - Adds new work to the work waiting on the next time step.
void setResDays(double v); - Sets the number of resource days required to the value

specified.
double getErrorsDetected); - Returns the portion of errors from previous tasks

detected during this task.
double getPctErrsDet0; - Returns the value of the PctErrsDet data member.
void initConvRate(double conyvrate); - Sets the work unit conversion rate to the

value specified.
void detach(Task &t); - Removes the specified task from the NextTasks list.
void EstimateResDays(double work-in); - Estimates the number of resource days it

would take to complete work-in amount of work including all later tasks given
current work rates. This function is the heart of the work estimation system.

virtual void restarto; - Resets all of the task's values to their initial state.
virtual void calculateTask(Resource &r, double num, Prod &p); - Calculates the

work done and errors created for this task using the number of resources
specified with the productivity specified.

virtual void step(); - Steps all values for this task to the next time step's values.

Allocation Class
class Allocation: public Value; - The Allocation class is used to keep track of allocations

of a particular resource to a task. Allocations are made each time step by the main model, and
management of allocations is done by the main model class. The allocation objects simply store
the resulting allocations. The class is derived from the Value class with the main Value
specifying the number of resources allocated.

Data Members
Resource *res; - Specified the resource being allocated.
Task *task; - The task this resource is allocated to.
Prod *prod; - The productivity of this resource for this task. Used during work done

calculations for the task.

Member Functions
Constructor Allocation(Task *t, Resource *r, double num, Prod *p); - Creates an

allocation object with data members as specified in the arguments.

45

Task *getTask0; - Returns the Task data member for this allocation.
Resource *getResource0; - Returns the resource (res) data member for this allocation.
Prod *getProd0; - Returns the productivity of this resource for this task.
virtual void calculateTasko; - Calls the calculateTasko member function of the

assigned task with arguments taken from this allocation. Calculates the work
done by this allocation of resources.

Resource Class
class Resource: public NamedBase; - The Resource class defines a generic resource and

allows the user to attach productivities for different production tasks to the resource. Each
resource has a name, type, and array of productivities for different tasks. Resources are derived
from the NamedBase class with the main Value used to keep track of the number of resources
available.

Data Members
Model *model; - The model object that this resource is attached to.
Array *Prods; - Array of productivities for this resource assigned to a variety of tasks.

Productivities may be assigned or de-assigned using the addo and detacho
member functions.

Member Functions
Constructor Resource(Model *mod, LPSTR name, IDTYPE type, double num); -

Creates a new resource with name, number and type specified and attaches it to
the named model object. The resource is initially created with no productivity
objects assigned. These must be adding using the addo member function.

-Resourceo; - Deallocates the Prod objects associated with this resource.

Array *getProdso; - Returns a pointer to the Prods array of productivity objects.
Prod &getProd(IDTYPE task type); - Looks up the particular productivity object for

tasks of type task-type.
virtual double getProdMulto; - Gets the current productivity multiplier associated with

this resource. Nominal productivities from the Prods array are multiplied by this
productivity multiplier when work done is calculated. The default member
function simply returns 1.0.

virtual double getErrMulto; - Returns the error multiplier associated with this resource.
Again the nominal error rate is multiplied by this multiplier when calculating
errors created. The default member function returns 1.0.

void add(Prod &p); - Adds a productivity object to this resource, thus specifying the
nominal productivity for this resource assigned to a particular task type.

void detach(Prod &p); - Removes a productivity object from the productivity list for
this resource.

virtual void restart); - Restarts the resource - assigning all values to their initial value.
virtual void calculateo; - Calculates all values associated with this resource.
virtual void stepo; - Steps all values for this resource one time step forward.

46

People Class
class People: public Resource; - The People class is derived from the generic resource

class and inherits all resource characteristics. In addition the People class adds communication
overhead and overtime effects to People resources.

Data Members
static Value TotalPeople; - A data member shared between all people resources. This

variable tracks the total number of people active on this project. It is used to
calculate mandays expended and communication overhead effects.

Value HoursPerWeek; - The number of hours per week assigned for this group of
people. Anything over 45 hours per week is considered overtime, and is subject
to burnout effects.

Value Burnout; - The burnout level for this group of people. Ranges from 0.0 to 1.0.
Value TrainLevel; - The training level as a portion of the potential productivity of the

group of people. This level will increase over the TrainDelay time until the
workers reach full productivity. Range is 0.0 to 1.0.

Value TrainDelay; - The training delay. The time, on the average, that it takes for this
group of people to reach full productivity if they start with a training level below
1.0.

Value RetentionTime; - The average retention time for this group of people. Workers
will suffer attrition over this average time.

double WillUseAutoOT; - A calibration feature that allows the modeler to enable
automatic management of overtime. Using the automatic feature, the model will
automatically assign overtime to this work group to compensate for resource
shortfalls in the model. A value of 1.0 turns this on, while 0.0 turns it off.

Member Functions
Constructor People(Model *m, LPSTR name, IDTYPE type, double num,

double AutoOT=0.0, double trainlevel=1.0, double train.delay=l.0e8,
double retention..time=l.0e8); - Creates a people object with name, type, and
number of people as specified and attaches this object to the specified model
object. Corresponding data members are set based on the optional inputs
AutoOT, train-level, traindelay, and retentiontime.

virtual double getCommLoss0; - Computes the current communications overhead.
Used by the getProdMulto member function to compute overall productivity.

virtual double getOTMult0; - Computes the current overtime multiplier for this
particular resource based on the burnout level and current HoursPerWeek. This
function is also called by the getProdMulto member function.

virtual double getProdMult0; - Computes the productivity multiplier for this group of
people taking into account the effects of burnout, overtime, training level, and
communication losses.

virtual double getErrMulto; - Returns the error multiplier based on current overtime,
and training level.

virtual double getTrainLevel0l; - Returns the value of the current TrainLevel variable.
virtual double getRetentionTime0; - Returns the value of the RetentionTime variable.
virtual double getTrainDelayo; - Returns the value of the TrainDelay variable.
Value &getHoursPerWeek(; - Returns a reference to the HoursPerWeek variable.
Value &getBurnout0; - Returns a reference to the Burnout variable.

47

virtual void addFlow(double numpeople); - This function can be used to add to the
pool of existing workers.

virtual void restarto; - Restarts the resource - assigning all values to their initial value.
virtual void calculate); - Calculates all values associated with this resource.
virtual void stepo; - Steps all values for this resource one time step forward.

Model Class
class Model: public NamedBase; - The Model class represents a model of a complete

project including all tasks and resources assigned to it. Stepping the model forward in time
effectively steps all of the objects associated with the model forward in time

Data Members
Array *tasks; - A collection of all of the tasks to be processed in this model.
Array *resources; - A collection of all resources assigned to this model.
Array *allocations; - A list of allocations of resources to tasks. This list is updated

eveiy time step.
Array *graphs; - A list of all of the graphs for the model which must be stepped each

time step.
double CurTime; - The current time (in days) simulated by the model.
int stop; - The stop time for the simulation in days.
Value Mandays; - The number of mandays used for this project.
Value EstResDays; - The current estimate of resource days to compete the project

based on work remaining and current work rates.
Value ResDaysRemain; - The actual number of resource days left until the schedule

expires.
Value Schedule; - The current scheduled completion for this project in days.
Value TotalPeople; - The total number of people assigned to the project.

Member Functions
Constructor Model(LPSTR name, int stoptime); - Creates an empty model with no

resources, tasks, or allocations attached. Sets the stop variable to the stopjime
specified. Model will simulate a total of stopjime days.

-Model(); - Destructor for model - deallocates all resources, tasks and allocations.
void InitArrayso; - Internal function used to set up the task, resource and allocation

arrays.
Array *getTaskso; - Returns the array of tasks for this model.
Array *getResources0; - Returns the array of resource for this model.
Array *getAllocations(; - Returns the resource allocations for this model.
Task &getTask(IDTYPE id); - Gets the task from the task array with identifier id.
Value &getMandayso; - Gets the mandays value associated with the model.
void addTask(Task &t); - Adds a new task to the task list of the model.
void addResource(Resource &r); - Adds a new resource to the resource list.
Value &getMandays0; - Returns a reference to the Mandays variable.
Value &getEstResDays0; - Returns a reference to the EstResDays variable.
Value &getResDaysRemain0; - Returns a reference to the ResDaysRemain variable.
int getCurTimeo; - Returns the current time in days.
Value &getSchedule0; - Returns a reference to the Schedule variable.
void initSchedule(double schedvalue); - Initializes the Schedule variable.

48

void setResDaysRemain(double v); Sets the ResDaysRemain variable.
double getResourceShortfall(); - Returns estimated resource shortfall based on the

current EstResDays and ResDaysRemain variables.
virtual double getEffWorkMultO; - Gets the effective productivity multiplier due to

schedule pressure on the workforce. Called by People resource objects to
determine additional productivity due to schedule pressure.

virtual void Allocateo; - Computes all allocations for this time step based on the work
waiting for each task and the resources available. Results are put in the model's
allocations array.

virtual void EstimateResDayso; - The function that Allocateo uses to estimate the
number of resource days required to finish a project.

void flushAllocationso; - Flushes the current allocations from the allocations array so
that the next time step's allocation can be computed.

virtual void restarto; - Restarts the model - assigning all values to their initial value.
virtual void calculateo; - Calculates all values associated with this model.
virtual void step(; - Steps all values for this model one time step forward.
virtual void stepModel(int n); - Calculates and steps the model forward n time steps.

49

Windows Modeling Classes
ModelViewer Class

class ModelViewer: public TMDIFrame; - The ModelViewer class forms the main multi-
document windows class for the model. This class handles requests from the user (menu
commands) and serves as a backdrop for the other windows.

Data Members
Model *model; - The main model object to be displayed. This is the model class

defined previously in this paper.
int nsteps; - The number of steps to move forward each time the model is stepped.

The default is 20 days.
LPSTR Name; - The name of the model - used to title the window.

ControlWindow *control; - Control window - lets user step, restart, and quit the model.
ResourceWindow *res; - Window to display all active resources.
TaskWindow *tasks; - Window to display all active tasks.
AllocationWindow *allocations; - Window to display resource allocations.
SummaryWindow *summary; - Window to display summary report.

Member Functions
Constructor ModelViewer(LPSTR name); Creates a new ModelViewer window.
virtual void SetupWindow0; - Function that creates all of the subwindows for the

model (i.e. ControlWindow, ResourceWindow, etc...) and makes them
displayable.

virtual void Refresho; - Refreshes each subwindow display with the latest model
values. This is called each time the model is stepped to update the display.

virtual void CMStep(RTMessage msg); - Menu command that steps the model
forward nstep days.

virtual void CMRestart(RTMessage msg); - Menu command to restart the model - to
day zero.

virtual void CMContinue(RTMessage msg); - Run the model continuously until the
preset stop time is reached.

virtual void CMOK(RTMessage msg); - Tied to the quit button - this function quits out
of the model when pressed.

int getStepso; - Retums the number of steps (nsteps).
void setSteps(int n); - Sets nsteps to the number specified. The default is 20 days.
Model *getModel0; - Returns the Model data member.

ControlWindow Class
class ControlWindow: public TWindow; - The ControlWindow class displays a small

window with four buttons on it. The buttons allow a user to step, restart, run continuously, and
quit from the model. Pressing the corresponding button results in a message being sent to the
main ModelViewer window where it is processed.

Data Members

50

ModelViewer *model; - Pointer to the main ModelViewer window.

Member Functions
Constructor ControlWindow(ModelViewer *m); - Creates a new ControlWindow

object with parent model window m.
virtual void SetupWindowo; - Creates buttons in the window and activates them.
virtual void Paint(HDC hdc, PAINTSTRUCT _FAR &ps); - Called by Windows to

repaint the window as needed.
virtual void CMStep(RTMessage msg); - Steps the model forward one step when the

Step button is pressed.
virtual void CMRestart(RTMessage msg); - Restarts the model when the restart

button is pressed.
virtual void CMOK(RTMessage msg); - Quits from the model when the Quit button is

pressed.
virtual void CMContinue(RTMessage msg); - Run the model continuously until the

preset stop time is reached.
virtual void CMNSteps(RTMessage msg); - Will allow the user to reset the number of

days per time step for the model.

TaskWindow Class
class TaskWindow: public TWindow; - The TaskWindow class displays a list of all task

names, the work to be done, and the errors generated for each task associated with a model.

Data Members
Array *tasks; - A pointer to the tasks array for the model.

Member Functions
Constructor TaskWindow(ModelViewer *m); - Creates a new TaskWindow object as a

subwindow of the ModelViewer m.
virtual void Paint(HDC hdc, PAINTSTRUCT FAR &ps); - Repaints the task window

updating the display to reflect the latest tasks list.

ResourceWindow Class
class ResourceWindow: public TWindow; - The Resource window displays the name of

each resource associated with the model along with the number of resources. The display is
updated with each time step.

Data Members
Array *Resources; - A pointer to the model's resource list.

Member Functions
Constructor ResourceWindow(ModelViewer *m); - Creates a new ResourceWindow

object as a subwindow of the ModelViewer m.
virtual void Paint(HDC hdc, PAINTSTRUCT -FAR &ps); - Repaints the resource

window updating the display to reflect the latest resource list.

51

AllocationWindow Class
class AllocationWindow: public TWindow; - The AIbocation Window shows a list of all

resource allocations currently active in the system. For each it shows the task the resource is
allocated to and the number of resources allocated. The display is updated as the model is
stepped.

Data Members
Array *Allocations; - A pointer to the allocation list of the model.

Member Functions
Constructor AllocationWindow(ModelViewer *m); - Creates a new AllocationWindow

object as a subwindow of the ModelViewer m.
virtual void Paint(HDC hdc, PAINSTRUCT FAR &ps); - Repaints the allocation

window updating the display to reflect the latest allocations list.

SummaryWindow Class
class SummaryWindow: public TWindow; - The SummaryWindow shows a report of the

key outputs of the model including mandays expended, size of project, and errors per thousand
lines of code. The display is updated as the model is stepped.

Data Members
ModelViewer *m; - A pointer to the main modelviewer window.

Member Functions
Constructor SummaryWindow(ModelViewer *m); - Creates a new SummaryWindow

object as a subwindow of the ModelViewer m.
virtual void Paint(HDC hdc, PAINSTRUCT FAR &ps); - Repaints the summary

window updating the display to reflect the latest summary information for this
particular run of the model.

GPoint Class
class GPoint: public Sortable; - The GPoint class is a simple class used to store points for

a particular Value object in the model as the model is run. These points can then be displayed in
a GraphWindow.

Data Members
double val; - The value of this point.

Member Functions
Constructor GPoint(double v); - creates a new point initialized to this value.
double getValue0; - Retums the value of this point.

Graph Class
class Graph: public Value; - A Graph object represents the storage of a single Value object

over time. Graphs are ultimately displayed as single data series lines on GraphWindows.

52

Data Members
LPSTR name; - The name of the variable being graphed.
int count; - A count of the current time step used to determine when to store the next

point.
int point-count; - An interval of how many steps to count in-between data

measurement. Rather than store every data point value, this count may be set
to store every 5 or 10 points of data for long projects.

double minvalue; - The minimum of all points - used in graph scaling.
double maxvalue; - The maximum value for all points- used to scale the graph.
Array *points; - The array of GPoint objects used to store individual data values.
Value *value; - A pointer to the actual Value object being graphed. Every pointcount

time steps this value is polled and stored as a new point in the graph.

Member Functions
Constructor Graph(Value *pval, LPSTR name, int ptcount=5); - Creates a new

Graph object which will track the Value object pointed to by pval every
point_count time steps.

-Grapho; - Destructor that deallocates the points associated with this graph.

LPSTR getName0; - Returns the name of this graph.
void AddPoint(double v); - Creates and adds a new point with value v.

virtual void stepo; - Steps the graph by sampling the value for this graph if it is the
appropriate time.

virtual void restarto; - Restarts this graph by freeing all current points.

GraphWindow Class
class GraphWindow: public TWindow; - The GraphWindow class simultaneously displays
multiple Graph objects in a window on the screen. This class takes care of drawing and scaling
multiple data sets on the same graph.

Data Members
Array *graphs; - Array of Graph objects to display in this window.
double minval, maxval; - Overall minimum and maximum values for all of the graphs

being displayed. Used to scale axis for the graph window.
ModelViewer *modelv; - Pointer to the model viewer window.

Member Functions
Constructor GraphWindow(ModelViewer *m, LPSTR name); - Creates a new

GraphWindow object with title equal to the name variable. The GraphWindow is
created empty, until graphs are added using the AddGraph function.

-GraphWindow(; - Destructor for the GraphWindow which deallocates all Graphs.

void AddGraph(Value *val, LPSTR name, int point count=S); - Creates a new Graph
object and adds it to this GraphWindow.

virtual void Paint(HDC hdc, PAINTSTRUCT JAR &ps); - Paints all of the Graph
objects to the window including axis and legend.

53

virtual void Refresho; - Forces the current window to be repainted.
void LabelYAxiso; - Labels the Y axis based on the current X and Y values.

virtual void step(); - Steps all of the Graph objects forward one time step.
virtual void restarto; - Restarts all of the Graph objects to their initial state.

64

Appendix B

Source Code

55

model.h

MODEL.H
// Object Oriented Software Process Model
// Thesis Project by Bradley Smith

#define valueClass (classType) 50

// The Value class forms the basis for all other classes in the model.
// A value represents any value in the model.
class Value : public Sortable {

public:
double value, startvalue, flowvalue;
Value(double v) { initValue(v); }; // Constructor
Value() { initValue(0.0); };

// Override object class functions - Inherit from Object
virtual hashValueType hashValue() const;
virtual classType isA() const { return valueClass; };
virtual int isEqual(const Object& testobj) const

{ return(value == ((Value &)testobj).getValue()) ; };
virtual int isSortable() const {return TRUE; };
virtual char *nameOf() const {return "Value" ; };
virtual void printOn(ostream& out) const

{ out << value; };
virtual int isLessThan(const Object& testObj) const;

// Main Value class methods
virtual uouble getValue() const { return value; };
virtual void initValue(double v) { value = v;

startvalue = v; flowvalue = 0.0; };

// Any value may be calculated, stepped or restarted
virtual void step() { value = value+flowvalue; flowvalue=0.0;};
virtual void calculate() { };
virtual void restart() { initValue(startvalue); };
operator double() { return(getValue()); };
void addFlow(double v) { flowvalue += v; };

#ifdef WINDOWS
// A Windows function that paints the value on a window
virtual void paintTo(HDC hdc, PRECT r);

#endif

// Derive some useful classes
typedef WORD IDTYPE; // Identifier type used for model objects

// The Base class adds a Type member to the inherited Value class.
// This allows the type of resource or task to be identified
class Base : public Value

56

model.h

{

public:
IDTYPE Type; // type of resource or task (i.e. Requirements)

Base(IDTYPE t)
{ setType(t); };

Base(IDTYPE t, double v)
{ setType(t); initValue(v);};

// Functions for manipulating the new type data member
void setType(IDTYPE t) { Type = t; };
IDTYPE getType() const { return Type; };
1;

// The NamedBase class adds a unique ID member as well as a Name to the
// base class. Resources and Tasks are derived directly from this
class
class NamedBase: public Base

I
public:

// A shared seed which generates unique identifiers for objects
static IDTYPE Idseed;

// The new Name and Id data members
IDTYPE Id;

LPSTR Name;

NamedBase(LPSTR n, IDTYPE t, double v) : Base(t)
{ Name = n; Id = ++Id seed; initValue(v); 1;

// New functions for manipulating the name and id.
LPSTR getName() const { return Name; };
void setName(LPSTR a) {Name= a; };
IDTYPE getId() const { return Id; };

_CLASSDEF(Resource)

// The productivity (Prod) objects are attached to resources to
// specify productivity and error rates for a particular resource
// working on a particular task.

class Prod: public Base
{

// Main variables are the error rate, error detection time, and rigor
// The Value member (inherited) stores the actual productivity
// and the Type member (inherited) keeps track of the task type.
Value ErrorRate, ErrorDetMult, Rigor;

public:
// Constructor

57

model .h

Prod(IDTYPE t, double rate, double err Irate=O.O,
double err -det Imult=1e6, double rigor=l.O) : Base(t)
f ErrorRate.initValue(err_rate);

ErrorDetMu it. initValue (err det mu it);
initValue(rate); Rigor. initValue(rigor); }

IIData member access functions
double getErrorRate() const f return ErrorRate.getValueo; };
double getErrorDetMult() const {return ErrorDetMult.getValueo; };
double getRig-..:() const f return Rigor.getValueo; };
virtual double getValue() const f return Value: :getValueo/getRigoro;

void addErrorRate(double v) { ErrorRate.addFlow(v); };
void addErrorDetmult(double v) f ErrorDetMult.addFlow(v); };
void addRigor(double v) J Rigor.addFlow(v); };

// Functions for controlling the Prod calculations and time step.
virtual void step()
f Base: :step(); ErrorRate. step(); ErrorDetMult. stepo;

Rigor.stepo; };
virtual void calculate()

{Base: :calculateo; ErrorRate.calculateo~;
Rigor.calculateo; ErrorDetMult.calculateo; };

virtual void restart()
{Base: :restart 1); ErrorRate, restart o; ErrorDetMult .restart U;

Rigor.restart();};

_CLASSDEF (Model)

IIThe resource class models a qsneric resource. Each resource has
IIone or more productivitl (Prod) objects attached that specify the
/1prodi',ctivity of the resource for a specific task.

class Resource: public NamedBase

public:
Model *model;
Array *Prods; /1Array of productivity

// constructor
Resource(Model *m,LPSTR n,IDTYPE type, double num);
-Resource() f delete Prods; }; // Resource destructor

// Data member access functions
Prod &getProd(IDTYPE task id);
void add(Prod &t) f Prods->add(t); };
void detach(Prod &t) f Prods->detach(t); };
ArLiy *getProds() I return Prods; };

//Production and error multipliers - overridden later when we

58

model.h

// implement specific resources (like the people class)
virtual double getProdMult() { return 1.0; };
virtual double getErrMult() { return 1.0; };

// Time dependent calculate), step() and restart() functions.
virtual void step(); // Need to step all prods
virtual void calculate(;
virtual void restart(; // Reset all resources

// The Task class defines an element or phase of the software process.
// Each task has a type associated with it (i.e. requirements). Tasks
// may be arbitrarily chained together using the add function. Tasks
// also may have error pools (Errs) and a unit conversion process
// (ConvRate) associated with them.

class Task: public NamedBase
{

// The NextTasks array defines all tasks that occur immediately
// after this one. Output from this task goes to all of these.

Array *NextTasks;
Model *model;

Value ConvRate; // Unit conversion rate for this task
Value Errs; // Errors accumulated for this task.
Value ErrReworkMult; // Error rework multiplier
Value PctErrsDet; // Percent errors detected

Value WorkDone; // Work done in this phase

double ResDays; // Temporary value used during resource
allocations

double TotRes; // Total resources assigned to task

public:
// Construcor
Task(Model *mod,LPSTR name, IDTYPE type, double v,

double errmult = 0.0, double pct_det = 0.0);
-Task() { delete NextTasks; }; // Destructor

// Data member access functions
double getErrorsDetected(; /f Return portion of errors detected
Array *getNextTasks() { return NextTasks; };
virtual Value *getErrors() { return &Errs; };
double getConvRate() { return ConvRate.getValue(); };
double getPctErrsDet() { return PctErrsDet.getValue); };
void initConvRate(double v) { ConvRate.initValue(v); };
void setTotRes(double v) { TotRes = v; };
void addTotRes(double v) { TotRes += v; };

59

model.h

double getTotRes() { return TotRes; };

// Add and remove tasks from the NextTasks list
void add(Task &t) { NextTasks->add(t); };
void detach(Task &t) { NextTasks->detach(t); };

void addWork(double v) { addFlow(v); };

// Time dependent calculation and stepping functions
virtual void step() { NamedBase::stepo; ConvRate.stepo;

Errs.step(); ErrReworkMult.step(); PctErrsDet.step();
WorkDone.step(); WorkDone.addFlow(-WorkDone.getValue());};

virtual void calculateTask(Resource &r, double num, Prod &p);
virtual void restart()

{ NamedBase::restart(); ConvRate.restart(); Errs.restart();
ErrReworkMult.step(); WorkDone.restart();};

// These funtcions used to calculate resource allocations by
// calculating the resource days required to complete this task.

void setResDays(double v) { ResDays = v; };
double getResDays() { return ResDays; };
double EstimateResDays(double in); // Estimate resource days for work

remaining

// Allocation objects are used to specify allocation of a
// particular resource to a particular task. Resources
// are reallocated by the main model class every time step.
class Allocation: public Value

{
Task *task; // Task to allocate to
Prod *prod; // Productivity of resource allocated
Resource *res; // Resource allocated

public:
Allocation(Task *t, Resource *r, double num, Prod *p)

{ task = t; prod = p; res = r; initValue(num); }; // Constructor

// Member access functions
Task *getTask() { return(task); };
Prod *getProd() { return(prod); };
Resource *getResource() { return(res); };

// Fuction to actually apply this allocation to the task.
virtual void calculateTask()

{ task->calculateTask(*res,getValue(), *prod); };

#ifdef WINDOWS
_CLASSDEF(GraphWindow)
#endif
// The Model class serves as a master for the other objects. A list

60

model.h

// of tasks, resources, and allocations is maintained by this class.
// Further the Model class recalculates allocations each time step.
class Model: public NamedBase

{
public:

// Set of tasks, resources, and allocations for this model
Array *tasks, *resources, *allocations, *graphs;
int CurTime; // The current time in days
int stop; // Simulation time in days
Value Mandays; // Mandays expended to date on the project
Value EstResDays; // Estimate of mandays required to finish
Value ResDaysRemain; // Actual mandays left in schedule
Value Schedule; // Current schedule
Value TotalPeople; // Total of all people last time slice

// Constructor and destructor functions for the model
Model(LPSTR name, int stoptime): NamedBase(name, 0, 0.0)

{ CurTime = 0; InitArrays(; stop = stoptime; restarto;};
-Model() { delete tasks; delete resources; delete allocations;

delete graphs; };

// InitArrays initializes all of the arrays for the model.
void InitArrays() { tasks = new Array(6,0,3); tasks-

>ownsElements(TRUE);
resources = new Array(3,0,2); resources->ownsElements(TRUE);
allocations = new Array(6,0,3); allocations->ownsElements(TRUE);
graphs = new Array(6,0,3); graphs->ownsElements(TRUE); };

// Member data access functions
Array *getTasks() { return tasks; };
Array *getResources() { return resources; };
Array *getAllocations() { return allocations; };
void flushAllocations() { allocations->flush(TShouldDelete::Delete); };
Task &getTask(IDTYPE id);
Value &getMandays() { return Mandays; };
Value &getEstResDays() { return EstResDays; };
int getCurTime() { return CurTime; };

Value &getSchedule() { return Schedule; };
void initSchedule(double v) { Schedule.initValue(v); };
Value &getResDaysRemain() { return ResDaysRemain; };
void setResDaysRemain(double v)

{ ResDaysRemain.addFlow(v-ResDaysRemain.getValue(); };
double getResourceShortfall(); // Resources required to finish on

time
virtual double getEffWorkMult() // Effective work multiplier due to

pressure
{ return MIN((l+getResourceShortfall()/TotalPeople.getValue()),

1.2); };

61

model.h

// Assign newly created tasks or resources to the project
void addTask(Task &t) { tasks->add(t); };
void addResource(Resource &r) { resources->add(r); };

#ifdef WINDOWS
void addGraph(GraphWindow &g);

#endif

// Control the project time steps
virtual void step(); // Steps model one day forward
virtual void stepModel(int n); // Calculates and steps model n days.
virtual void calculate(;
virtual void restart(); // Restart entire model

// Reallocates resources to tasks based on work waiting
virtual void Allocateo;
virtual void EstimateResDays(; // Estimate resource days required for

project.
// Gets called by Allocate after allocation calculations

// The People class is a special instance of Resource - People adds
// overtime burnout and communication loss to resource calculations.
class People: public Resource

{
Value HoursPerWeek; // Hours to work per week
Value Burnout; // Burnout percentage
Value TrainLevel; // Training level
Value TrainDelay; // Training delay
Value RetentionTime; // Worker retention time
double WillUseAutoOT; // Automatic Overtime Feature

public:
People(Model *m,LPSTR n, IDTYPE type, double num,double AutoOT=0.0,

double trainlevel=l.0, double traindelay=l.0e8,
double retentiontime = 1.0eS)

:Resource(m,n,type,num)
{ model->TotalPeople. initValue(model->TotalPeople.getValue()+num);
HoursPerWeek. initValue(40.0);
TrainLevel.initValue(trainlevel);
TrainDelay.initValue(traindelay);
RetentionTime.initVa.Lue(retentiontime);
WillUseAutoOT = AutoOT;}; // Constructor

// Functions for accessing data members
virtual void addFlow(double v)

{ Resource::addFlow(v); model->TotalPeople.addFlow(v); };
virtual void setHoursPerWeek(double hours)

{ HoursPerWeek.addFlow(hours-HoursPerWeek.getValue());};
virtual double getCommLoss(); // Communication losses
virtual double getTrainLevel() { return TrainLevel.getValue); };

62

modei~h

virtual double getRetentionTime() f return RetentionTime.getValueo; }
virtual double getTrainDelayo() return TrainDelay.getValueo; };
virtual double getOTMulto; // Overtime multiplier
Value &getHoursPerWeek() I return HoursPerWeek; };
Value &getBurnout() { return Burnout;);

// Productivity and error multipliers overridden from Resource class
virtual double getProdMult() // Productivity multiplier
I return((l-getCommLoss ())*getOTMulto()*getTrainLevel ()

* model->getEffWorkMulto););
virtual double getErrMulto(return((1.0+0. 5*Burnout .getValueo)

*(2.0-.getTrainLevel())); }

IIFunctions to calculate, step and restart the model
virtual void calculateo;
virtual void step() { Resource::stepoj; Burnout.stepo;

HoursPerWeek.stepo;
TrainLevel.stepo; TrainDelay.stepop;
RetentionTime. step(); };

virtual void restart() Resource::restarto; HoursPerWeek.restartfl;
Burnout, restarto(;
TrainLevel.restarto; TrainDelay.restart();
RetentionTime.restart();};

63

modwin.h

MODWlN.H
// Model Windows Interface -- derived from objectwindows
// classes - Brad Smith, Thesis Project, Boston University

// Global variables for the size of the default text font
extern int htxt, wtxt;

_CLASSDEF(ModelViewer)

extern ModelViewer *pModelViewer;

// The ControlWindow class displays buttons the user can press to
// step, restart and quit the model.
class ControlWindow: public TWindow

{
ModelViewer *model; // A pointer to the ModelViewer to step

public:
ControlWindow(ModelViewer *m);

// Standard functions to setup and paint the window
virtual void SetupWindowo;
virtual void Paint(HDC hdc, PAINTSTRUCT _FAR &ps);

// Command functions activated by pressing buttons
virtual void CMNSteps(RTMessage msg)=[IDFIRST+RNSTEPS];
virtual void CMStep(RTMessage msg) = [IDFIRST+CMSTEP]; // Step model
virtual void CMRestart(RTMessage msg) = [IDFIRST+CMRESTART]; //

Restart
virtual void CMOK(RTMessage msg) = [ID_FIRST+IDOK]; // Quit model

// This Continue selection runs the model to completion
virtual void CMContinue(RTMessage msg) = (ID_FIRST+CMCONTINUE];

// The AllocationWindow class displays the resource allocations for
// the project including how many resources are dedicated to each task.
class AllocationWindow:public TWindow

{
Array *Allocations;

public:
AllocationWindow(ModelViewer *m);
virtual void Paint(HDC hdc, PAINTSTRUCT FAR &ps);

// The ResourceWindow displays all of the resources available
class ResourceWindow: public TWindow

{
Array *Resources;

public:
ResourceWindow(ModelViewer *m);
virtual void Paint(HDC hdc, PAINTSTRUCT FAR &ps);

64

modwin.h

1;

// The SummaryWindow displays summary of key variables
class SummaryWindow: public TWindow

{
ModelViewer *m;

public:
SummaryWindow(ModelViewer *m);
virtual void Paint(HDC hdc, PAINTSTRUCT FAR &ps);

// The TaskWindow class displays the work waiting and errors for each
// task associated with the project.
class TaskWindow: public TWindow

{
Array *Tasks;

public:
TaskWindow(ModelViewer *m);
virtual void Paint(HDC hdc, PAINTSTRUCT -FAR &ps);

// The ModelViewer class serves as the main frame window for the model.
// All other model displays as well as the main menu are subwindows of
// this model frame.
class ModelViewer: public TMDIFrame

{
public:
int nsteps; // Number of days per user time step
Model *model; // Actual Software Process Model (see model.h)

// The following are displayed windows
ControlWindow *control;
ResourceWindow *res;
TaskWindow *tasks;
AllocationWindow *allocations;
SummaryWindow *summary;

// The Name member specifies the name to be displayed at the top
// of the frame window.
LPSTR Name;

ModelViewer(LPSTR name); // Constructor function

virtual void SetupWindowo; // Initializes child windows
virtual void Refresh); // Forces all child windows do redisplay

// CMStep is a menu selection (and button) that steps the model
virtual *:!d CMStep(RTMessage msg) = (CMFIRST+CMSTEP];
// CMRestart() is a menu selection and button that restarts the model
virtual void CMRestart(RTMessage msg) = (CM FIRST+CMRESTART];
// This Continue selection runs the model to completion

65

modwin.h

virtual void CMContinue(RTMessage msg) = [CM_FIRST+CMCONTINUE];

// Using getSteps() and setSteps() the number of days per user step
// can be set.
int getSteps() { return nsteps; };
void setSteps(int n) { nsteps = n; };

// Other classes can use the getModel() function to access the model.
Model *getModel() { return model; };

// Graph points - get put in point array for graphs
class GPoint: public Sortable

{
public:
double val;
GPoint(double v) { val = v; };
double getValue() { return val; };
virtual hashValueType hashValue() const { return 0; };
virtual classType isA() const { return valueClass; };
virtual int isEqual(const Object& testobj) const

{ return(val == ((Value &)testobj).getValueo) ; };
virtual int isSortable() const {return TRUE; };
virtual char *nameOf() const {return "GPoint" ; };
virtual void printOn(ostream& out) const

{ out << val; };
virtual int isLessThan(const Object& testObj) const

{ return(((GPoint &) testObj).val == val); };

// The Graph class is an autoscaling graph
class Graph: public Value

{
public:

LPSTR name;
int count, pointcount; // Used for saving every N points
double minvalue, maxvalue;
Array *points;
Value *value;
Graph(Value *val, LPSTR nam, int np = 5)

{ minvalue=0.0; maxvalue=0.01; value=val; name = nam;
points = new Array(5,0,1); points->ownsE2.ements(TRUE);
point_count = np; count = 0; };

-Graph() { delete points; };
LPSTR getName() { return name; };
void AddPoint(double v);
virtual void step);
virtual void restart() { points->flush(TShouldDelete::Delete); };

// The GraphWindow class - a window with multiple graphs on it

66

modwin.h

class GraphWindow:public TWindow
{

public:
Array *graphs;
double minval, maxval;
ModelViewer *modelv;

GraphWindow(ModelViewer *m, LPSTR name);
-GraphWindow() { delete graphs; };

// Step the graphs forcing each to capture the current point
virtual void stepo;
virtual void restart);
virtual void Paint(HDC hdc, PAINTSTRUCT _PAR &ps);
virtual void Refresh() { InvalidateRect(HWindow, NULL, TRUE);};
void LabelYAxis(HDC hdc, RECT &g);
// Add a new value to the graph
void AddGraphtValue *val, LPSTR name, int np=5);
};

// Select a color for multiple color options
I/ Sets both line and pen color...
void SelectColor(HDC hdc, int i);

67

Other Header Files

MENU.H
// Menu Constants for model - from menu resource file
// by Bradley Smith

#define CMSTEP 500
#define CMRESTART 501
#define CM CONTINUE 502

RES.H
/1 Resources for model - from Windows resource file
// By Bradley Smith
#define R NSTEPS 101

SPM.H
// Main header file for object oriented software
// process model - Bradley Smith

// UNDEF WINDOWS to turn off windows functions in classes
#define WINDOWS
#define WIN30

#define TRUE 1
#define FALSE 0

#define MIN(x,y) ((x)<(y) ? (x): (y))
#define MAX(x,y) ((x)<(y) ? (y) (x))

#include <stdio.h>
#include <owl.h>
#include <shddel.h>
#include <strng.h>
#include <array.h>
#include <button.h>
#include <math.h>
#include "res.h"
#include "menu.h"
#include "model.h"
#include "modwin.h"

68

example.cpp

EXAMPLE. CPP
// A modeling example - the waterfall software process model
// Independent Study Project - by Bradley Smith

#include <spm.h>

// Globals
ModelViewer *pModelViewer; / Main Model Window

// First derive a Windows application from the default
// TApplication ObjectWindows class
class ModelApp : public TApplication

{
public:

ModelApp(HANDLE hInst, HANDLE hPrev, LPSTR cmdline,
int CmdShow) : TApplication ("Software Process Model",

hInst, hPrev, cmdline, CmdShow) {};

virtual void InitMainWindow(;

// Create a new model derived from the standard Model class
f/ that is initialized using InitModel();
class SampleModel: public ModelViewer
{

public:
SampleModel():

ModelViewer("Sample Model") { InitModel();};
virtual void InitModel();

// Set the SampleModel up as the main window for our Windows
// Application
void
ModelApp::InitMainWindow()

{
pModelViewer = new SampleModel();
MainWindow= pModelViewer;
I};

// Constants used to identify task types
#define REQUIREMENTS 1
#define DESIGN 2
#define CODING 3
#define TESTING 4
#define DONE 5

// Initial problem parameters
#define SIMTIME 320 /f Simulation time in days
#define INITSCHEDULE 263 /f Schedule in days

69

example.cpp

#define INITSIZE 32.0 // Size of the problem (KDSL)
#define INITPEOPLE 6.6 // Number of people
#define WILL USE OT 1.0 // Willingness to use overtime

// Production controls
#define NOM RATE 13.0 // Nominal Lines per day
#define RQTSPCT 15.0 // Percent time spent in each phase
#define DESIGN PCT 20.0
#define CODE PCT 40.0
#define TEST PCT 25.0
#define RQTSRATE (NOMRATE/10.0)/RQTSPCT // Work rates
#define DESIGN RATE (NOMRATE/10.0)/DESIGNPCT
#define CODERATE (NOMRATE/10.0)/CODE_PCT
#define TESTRATE (NOMRATE/10.0)/TESTPCT

// Error creation rates (Errors/KDSL)
#define RQTSERRRATE 9.25
#define DSGN ERRRATE 26.0
#define CODEERRRATE 15.0

// Errors and error detection controls
#define ERR DET ADJ 0.7
#define RQTSERRMULT (ERRDETADJ*INITSIZE)
#define DSGNERRMULT (ERRDETADJ*INITSIZE)
#define CODEERRMULT (ERRDETADJ*INITSIZE)
#define REWORK MULT (.005) // 5 lines per error for rework
#define PCT ERR DETDSGN (0.50) // Percent of errors detected in
different phases
#define PCT ERR DETCODE (0.70)
#define PCTERRDETTEST (0.90)

// Second people pool - compiled in if MORE PEOPLE is defined
#define MORE PEOPLE 7.0
#define PROGRAMMERS 101

// Prototype model creation - can be turned on and off

#define PROTOPCT 15.0
#define PROTORATE (NOMRATE/10.0)/PROTOPCT
#define PROTOERRMULT RQTS_ERR MULT
#define PROTOERRRATE 9.0 // Almost same as rqts rate
#define PRQTSERRRATE (RQTSERRRATE/2.0)
#define PDSGNERRRATE (DSGNERRRATE/2.0)
#define PRQTS RATE (NOMRATE/10.0)/7.0 // 7% of project
#define PDSGNRATE (NOMRATE/10.0)/13.0 // 13% of project
// #define PROTO 6 // Define this to turn prototype on

// Resource type identifiers
#define PEOPLE 100

// Actually build the sample model!

70

examplexcpp

void SampleModel: :InitModel ()

Task *rqts, *dsgn, *code, *test, *done, *proto;
People *r;
Model *m;
GraphWindow *g;

// Create an empty model
ModelViewer: :model =new Model(ModelViewer::Name, SIMTIME);
m=getModel);

// Set Schedule
m->initSchedule(INITSCHEDULE);

I ifdef PROTO
// Include a prototype phase
proto =new Task(m, "Prototype", PROTO, INITSIZE, REWORKMULT);
rqts =new Task(m,"Requirements", REQUIREMENTS, 0.0,
RLiJORKMULT, PCTERRDETDSGN);

dsgn = new Task(rn,"Design", DESIGN, 0.0,REWORKMULT, PCTERRDETDSGN);

#else
// Normal run - no prototype
rqts =new Task(m,"Requirements', REQUIREMENTS, INITSIZE,
REWORKMULT);

dsgn =new Task(m,"Design", DESIGN, 0.0,REWORKMULTI PCTERRDET_DSGN);
Oendif
code = new Task(m,"Coding", CODING, O.0,REWORK_-MULT, PCTERRDETCODE);
test =new Task(m,"Testing", TESTING, O.0,REWORK_MULT,
PCT_-ERRDETTEST);
done = new Task(m,"Work Done!", DONE, 0.0,REWORKMULT);

// Chain the tasks together
fifdef PROTO
proto->add (*rqts);

#endif
rqts->add(*dsgn);
dsgn->add(*code);
code->add (-*est);
test->add (*done);

g = new GraphWindow(this, "Work Done");
m->addGraph(*g);

#ifdef PROTO
g->AddGraph(proto, "Prototype");

Oendif
g->AddGraph(rqts, "Requirements");
g->AddGraph(dogn, "Design");
g->AddGraph(code, "Coding");
g->AddGraph(test, "Testing");

71

examplexcpp

/1Graph of mandays e,ý-t and remaining

g = new GraphWindow(this, "Mandays");

m->addGraph(*g);

g->AddGraph(&(m->getMandays0)f, "'Mandays Expended");

g->AddGraph(&(m->getEstResDays of, "Estimated Mandays");

g->AddGraph(& (m->getResDaysRemain U), "Mandays Remaining")

// Graph Errors
g = new GraphWindow(this, "Errors Graph");

m-.>addGraph(*g);

#ifdef PROTO
g->AddGraph(proto->getErrorso, "Prototype Errs");

Oendif
g->AddGraph (rqts->gatErrors 0, "Requirements Errs"');

g->AddGraph (dsgn->getErrors o, "Design Errs");

g->AddGraph(code->getErrors0, "Code Errs");

// Create a resource - in this case people
r~new People(m,"People", PEOPLE, INITPEOPLE, WILLUSEOT);

// Add productivities to our resource for each task type

#ifdef PROTO
r->add(* (new Prod(PROTO, PROTORATE, PROTO ERR RATE, PROTC ERR ?4ULT))

r->add(* (new Prod(REQUIREMErJTS,

PRQTS_-RATE,PRQTSERRRATE,RQTSERRMULT)))
r->add(* (new Prod(DESIGN, PDSGNRATE, PDSGNERRRATE,

DSGN_-ERRMULT)))

#else
r->add(* (new Prod(REQUIREMENTS,

RQTS_-RATE,RQTSERRRATE,RQTSERRMULT)))
r->add(* (new Prod(DESIGN, DESIGNRATE, DSGNERRRATE, DSGNERRMULT))

0endif

r->add(* (new Prod(CODING, CODE_-RATE, CODE_-ERR-RATE, CODEERRMULT)))

r-~>add(* (new Prod(TESTING, TESTRATE)));

IIConditional code section for the case where we want multiple

/1pools of people!
#ifdef MOREPEOPLE
r= new People(m, "Programmers", PROCRAMMERS, MOREPEOPLE, WILLUSEOT);

/1Make new pool more productive in coding but less productive
II in design

r->,add(* (new Prod(REQUIREMENTS,
RQ"'SRATE,RQTS ERR RATE,R.QTSERRMULT)))

r-~>add(* (new Prod(DESIGN, DESIGN RATE*.5, DSGNERRRATE,

DSGN ERR MULT)))
r-.>add(*; (new Prod(CODING, CODERATE*2.O, CODE ERR RATE,

CODEERRMULT)));

r->add(* (new Prod(TESTING, Th'ST-RATE)))

72

example.cpp

#endif

// Add a graph for overtime
g = new GraphWindow(this, "Overtime");
m->addGraph(*g);
g->AddGraph(&(r->getHoursPerWeek(o), "Hours Per Week");

g = new GraphWindow(this, "Burnout");
m->addGraph(*g);
g->AddGraph(&(r->getBurnout()), "Burnout");

// Initialize the default model step size to 20 days
setSteps(20);

// This is the main program - taken directly from the
// ObjectWindows reference - just create an application
// and tell it to run.
int PASCAL

WinMain(HANDLE hlnst, HANDLE hPrev, LPSTR line, int show)

{
ModelApp mapp(hInst,hPrev, line,show);

mapp.Run();

return mapp.Status;

73

model.cpp

MODEL. CPP
// Object Oriented Software Process Model
// Thesis project by Bradley Smith

#include <spm.h>

// Global seed for NamedBase class - used to generate
// a unique identifier for each task and resource
IDTYPE NamedBase::Idseed;

// Hashing function that must be defined for Objects
hashValueType
Value::hashValue() const
{
return((hashValueType) value);

}

// Function that allows direct value comparisons
int
Value::isLessThan(const Object& testobj) const

{
return(value < ((Value &)testobj).getValue());
}

#ifdef WINDOWS
// Windows function to paint a Value object's number on
// a window at location specified in the rectangle prect.
void
Value::paintTo(HDC hdc, PRECT prect)

{
char s[25];
sprintf(s,"%.2f", value);
DrawText(hdc, s, lstrlen(s), prect,

DTRIGHT I DTSINGLELINE);
}

#endif

// Function that returns the Prod object for a given
// taskid. Used to calculate productivity for that task.
Prod &Resource::getProd(IDTYPE taskid)

{
ArrayIterator i(*Prods);

for(i.restart(); i.current() 1= NOOBJECT; i++)
if(((Prod &) i.current(o).getType() == taskid)

return((Prod &) i.current();
return ((Prod &) NOOBJECT);
}

// Constructor for resource class

74

model .cpp

Resource: :Resource(Model *m,LPSTR n,IDTYPE type, double num)
NamedBase(n, type, num)

f
model =m
Prods = new Array(5,O,l);
Prods->ownsElements (TRUE);
m->addResource (*thjs);

1/Function to step all values associated with a resource
void Resource: :step()

f
Arraylterator i (*Prods);
NamedBase: :step();
for(i.restarto; i.current()! NOOBJECT; i++)
((Prod &) i.currento).stepo;

1/Function to calculate all values for a resource object
void Resource: :calculate()

Arraylterator i (*Prods);
NamedBase: :calculateo;
for(l.restarto; i.current() I= NOOBJECT; i++)

((Prod &) i.currentofl.calculateo;

1/Function to reset all values for a resource to their initial
Ifvalues.

void Resource: :restart()

Array Iterator j (*Prods);
NamedBase: :restarto);
for(i.restarto; i.current(I= NOOBJECT; i++)

((Prod &) i.currento).restarto;

//Constructor for the Task class
Task: :Task(Model *mod,LPSTR name, IDTYPE type, double v,

double err-mult, double pct_det) : IConstructor
NamedBase(name, type, v)

model = mod;
NextTasks = new Array(4,O,l);
ConyRate. initValue(l.O);
ErrRework~ult. initValue(err-mult);
PctErrsDet.initValue(pct_det);
WorkDone. initValue(O.O);
model->addTask(*this);

75

model.cpp

//Member function to calculate the work done and errors generated for
//a given task, passing work done to all NextTask tasks.

void Task: :calculateTask(Resource &r, double num, Prod &p)

double errs-det, work_passed, work-done;

// Calculate data members
ConvRate.calculateo;
Errs. calculate 0;

// Calculate the work done in this time step
work -done = MIN(getvalueo*num/getTotRes()

,p.getValue() * nurn * r.getProdMulto);
IIAdd to error pool

Errs.addFlow(p.getErrorRate() * work-done*
r.getErrMult(/p.getRigorofl;
// Do the work
addFlow(- work done);
WorkDone.addFlow(work-done);

// Error feedback calculation
errs~det=(num/getTotRes ()) *(Errs. getValue()* (getErrorsDetected()-

WorkDone.getValue(*getPctErrsDet()))/p.getErrorDetMulto;
errs -det = MIN(Errs.getValueo*num/getTotReso, errs-det);
Errs.addFlow(-errs det);
addFlow(errs-det*ErrReworkMult.getValueo);

// Add to other tasks based on conversion rate
work-passed = work-done * getConvRateoi;

// Pass work done to all tasks in the NextTasks list
Arraylterator i (*getNextTaskso(f;
for(i.restarto; i.current() != NOOBJECT; i++)

((Task &) i.current()).addWork(work-passed);

IICompute errors detected in subsequent phases
double
Task: :getErrorsDetected()

double d = WorkDone.getValueo*getPctErrsDeto;
Arraylterator i(*getNextTasks());
for(i.restarto; i.current() I= NOOBJECT; i++)

d+= ((Task &) i. current () .getErrorsDetected() / getConvRateo(;
return(d);

IIEstimate how long it will take to do this

76

model.cpp

double
Task: :EstimateResDays(double in)

double est; 1/Estimate
Arraylterator next (*NextTasks);
if(getflesDays() == 0.0 11 getValue() == 0.0)
est =0.0;

else
est = in*getResDaysfl/getValueo; // Current work rate

for(next.restartoi; next.current() != NOOBJECT; next++)
eat += ((Task &)next.currento) .EstimateResDays(in);

return(est);

IIA function to step the model n steps forward in time.
void Model: :stepl~odel(int n)

f
int i;

for(i0O; i<n; i++)

f
calculateo;
stepo;

IIA function that steps the entire model forward one day
/1in time.

void Model: :step()

if(CurTime+1 > stop)
return;

CurTime ++;

Arraylterator i(*tasks);
for(i.restarto;i.current() 1= NOOBJECT; i++)
((Task &) i.currentofl.stepo;

Arraylterator j (*resources);
for(j.restarto; j.current() 1= NOOBJECT; j++)
((Resource &) j.currente)).stepo;

Arraylterator k(*allocations);
for(k.restarto; k.current() 1= NOOBJECT; k++)
((Allocation &) k.currentop).Btepo;

Mandays.stepo;
EstResDays.stepo;
ResDaysRemain.step();
Schedule.step();
TotalPeople. step();

#fifdef WINDOWS
Arraylterator l(*graphs);
for(l.restarto; l.current() 1= NOOBJECT; 1++)

77

model.cpp

((GraphWindow &)l.currentofl-stepfl;
IIInvalidateRect (pModelViewer->control->HWindow,NULL, TRUE);

#endif

IIRestart the model to it's initial values
void Model: :restart()

CurTime = 0.0;
Arraylterator i (*taskg);
for(i.restartLo;i.current() NOOBJECT; i++)
((Task &) i.currentofl.restarto;

TotalPeople. restart o;
Arraylterator j (*resources);
for(j.restarto; j.current() NOOBJECT; j++)
((Resource &) j.currentofl.restarto;

Mandays.restarto;
EstResDays.restarto;
flushAllocations o;
Allocateo;

#ifdef WINDOWS
Array Iterator 1 (* graphs);
for(l.restarto; l.current() 1= NOOBJECT; 1++)
((GraphWindow &)l.current()).restart();

#endif

//This allocation computes average productivity and then assigns
IIresources based on total resource days required.

void Model: :Allocate()

{
double tot-res_days = 0.0;
Arraylterator r (*resources);
mnt n;
Task *task;
Resource *res;
Allocation *al;
flushAllocations();

// Total the tasks in mandays
Arraylterator t(*tasks);
for(t.restarto; t.current() 1= NOOBJECT; t++)

task = &((Task &) t.currento);
task->setResDays(0.0); IfCompute new average work rate
task->setTotRes(le-10); //Reset total resources for this task
n=0;
// Find average work rate for this task!

for(r.restartoj; r.current() 1= NOOBJECT; r++)

78

model.cpp

Prod &p= ((Resource &) r. current()).getProd(task->getTypeo);
if(p !=NOOBJECT)

task->setResDays (task->getResDayso()+
p.getValueo*((Resource &)r.current()).getProdMulto);

//compute the average
if(n!= 0)

f
// Divide work by average work rate to estimate resource days
task->setResDays (task->getValue ()

(task->getResDays() (double) n));

else
task->setResDays(0.0); IfOtherwise no work can be done

/1Now make allocations bases on total resources available
for(r.restarto; r.current()! NOOBJECT; r++)

f
Arraylterator pd(*((Resource &) r. current () .getProds (fl;
tot -res days =0.0;
for(pd.restarto; pd.current()1 NOOBJECT; pd++)

f
tot -res -days += getTask(((Prod

&)pd.current()).getType()).getResDays();

//make sure there is work to be done!
if(tot -res days != 0.0)
IIActually make allocations
for(pd.restarto; pd.current()! NOOBJECT; pd++)

task =&(getTask(((Prod &) pd.currento).getTypeofl);
res =&((Resource &) r.current());

al = new Allocation(task, res, res->getValueo*
task->getResDayso/tot_res_days, &((Prod

&) pd. current 0));
task->addTotRes (res->get Valueo() task->getResDayso(

/tot -res-days); //Add to task total resources
allocations->add (*al);

IfCompute estimate of resource days required for project!
EstimateResDayso;

I

void
Model: :EstimateResDays()

79

model cpp

double est = 0.0;
Arraylterator t(*tasks);
for(t.restarto; t.current()o NOOBJECT; t++)
// Add each tasks estimate to total
est +=((Task &) t.current()).EstimateResDays(

((Task &)t.currento).getValueo);
//Revise our estimate each time step!

EstResDays.addFlow(est-EstResDays.getValueW);

// Set resource days remaining for each step
if(Schedule.getValue() > (double) CurTime)

setResoaysRemain (TotalPeople. getValueo(
*(Schedule.getValue(-(dotuble) CurTime));

else
setResDaysRemain(0.0); //No days remaining in schedule

1/Estimate resource shortfall based on mandays remaining
/1and mandays required to finish

double
Model: :getResourceShortfall()

f
// Is project under no pressure?
if (ResDaysRemain. getValue() > EstResDays.getValueo)

return 0.0; // No schedule pressure

1/Has schedule already expired?
if(Schedule.getValue() <= (double)CurTime+1.0)

return EstResDays.getValueo;

1/Calculate resources needed to complete project
return((EstResDayB.getValueo -ResDaysRemain.getValueo)

I(Schedule.getValue(-(double)CurTime));

//Looks up the task with type == id
Task &Model::getTask(IDTYPE id)

f
Arraylterator i (*tasks);
for(i.rescarto; i.current() 1= NOOBJECT; i++)
if(id == ((Task &)i.currentofl.getTypeo)

return((Task &)i.currento);
return (Task &)NOOBJECT;

1/This function recalculates the entire model for the next time step
void Model: :calculate()

IIAllocate resources

80

model.cpp

Allocate(;
// Walk allocations and step through tasks
ArrayIterator a(*allocations);
for(a.restart(); a.current() != NOOBJECT; a++)

((Allocation &)a.current()).calculateTask(;

// Calculate resources and mandays expended
ArrayIterator r(*resources);
for(r.restart(); r.current() I= NOOBJECT; r++)

{
((Resource &) r.current()).calculate(;
if(EstResDays.getValue() > TotalPeople.getValue()

Mandays.addFlow(((Resource &)r.current()).getValue();
}

TotalPeople.calculate();
// All done!
}

// Communication loss table - based on people assigned
double CommLossTable[] =

{
0.0, // 0 people
.140, // 10 people
.245, // 20 people
.355, // 30 people
.385, // 40 people
.400, // 50 people
.425, // 60 people
.445, // 70 people
.460, // 80 people
.476, // 90 people
.492, // 100 people
.505, // 110 people
.515, // 120 people
.525, // 130 people
.535, // 140 people
.547, // 150 people
.558, // 160 people
.567, // 170 people
.590, // 180 people +
1;

// Looks up communication loss value from CommLossTable based on
// number of people assigned to the project.
double
People::getCommLoss()

f
double t=model->TotalPeople.getValue();
int i;

81

model .cpp

if(t>= 180.0)
return(CommLossTable(18]);

i=(int) (t/lO.0);
// Otherwise interpolate into table!
return (CommLossTable [!] +

(CommLossTable~i+1]-CommLossTable[i])*(t-(double)i*lO.O)/1O.O);

#define BURNOUTDELAY 50.0
#define RECOVERYDELAY 40.0
// Calculates People resources including burnout effects
void
People: :calculate()

double ot, burn;
Resource: :calculateo;
HoursPerWeek.calculateo;

// Calculate new burnout level based on HoursPerWeek
ot=HoursPerWeek. getValue ()-45.0;
burn=Burnout .getValueo(;
if(ot > 0.0)
Burnout.addFlow(MIN(1.0-burn, ot/40.0/BURNOUTDELAY));

else
Burnout.addFlow(-burn/RECOVERYDELAY);

Burnout.calculateo;

//We can adjust the overtime level based on schedule
IIpressure if the Auto Overtime feature is enabled

if(WillUseAutoOT > 0.0)
setHoursPerWeek(MIN(60.0, 40.0*(1+WillUseAutoOT*

model->getResourceShortfall () /model->TotalPeople.getValueo)))
// To max of 60 hours per week

IICalculate Losses to Workforce
if(getRetentionTime() < 1.0e6) //Is there any retention time?
addFlow(-getValueo(/ getRetentionTime o);

/1Calculate increases in training level
if(getTrainLevel() < 1.0 && getTrainDelay() < 1.0e6)
TrainLevel. addFlow ((1. 0-getTrainLevel())/getTrainDelay 0);

/1Get the overtime multiplier for this group of People
double
People: :getOTMult()

f
double ot,burn;
ot=HourBPerWeek.get'Jalue()/40.0;

82

model.cpp

burn =Burnout-getValueo;

// overtime mult is 1-0.5 * burnout squared

ot = ot*(1.O-O.5*burn*burn);
return at;

lifdef WINDOWS
void
Model: :addGraph(GraphWifldow &g)

f
graphs->add(g);

#endif

83

modwin.cpp

MODMWN.CPP
// Microsoft Windows Interface -
// Thesis software process model - Bradley Smith

#include <spm.h>

// Global height and width of standard font character
int htxt, w txt;

// Function to grab the standard font size for a window
void GetTextSize(HDC hdc, int &w, int &h)

{
TEXTMETRIC tm;
GetTextMetrics(hdc, &tm);
w=(tm.tmAveCharWidth * 5)/ 4;
h=tm.tmHeight + tm.tmExternalLeading;
}

// ModelViewer constructor - creates a Frame Window
ModelViewer::ModelViewer(LPSTR name)

:TMDIFrame(name, "menu,)
{
nsteps = 1;
ChildMenuPos = 3;
Name = name;
}

// The SetupWindow function creates all of the model sub-windows
void
ModelViewer::SetupWindow()

{
HDC hdc;
Array *g;
// Call inherited SetupWindow() function
TMDIFrame::SetupWindow(;

// Calculate the text size
hdc = GetDC(HWindow);
GetTextSize(hdc,w txt, htxt);
ReleaseDC(HWindow, hdc);

// Creat control, resource, task and allocation windows
control= new ControlWindow(this);
res = new ResourceWindow(this);
tasks = new TaskWindow(this);
allocations = new AllocationWindow(this);
summary = new SummaryWindow(this);
GetModule()->MakeWindow(control);
GetModule()->MakeWindow(res);
GetModule()->MakeWindow(tasks);

84

modwin cpp

GetModule()->MakeWindow(allocations);
GetModuleo()->MakeWindow(summary);

/1g=getModel()->graphs;
IIArraylterator i(*g);
IIfor(i.restarto; i.current() NOOBJECT; i++)
/1 GetModule()->.MakeWindow((GraphWindow *) &i. currento)f;

IICMStep() menu function steps entire modiel forward nsteps.
void ModelViewer::CMStep(RTMessage msg)

f
HCURSOR hCursor;
hCursor=SetCursor (LoadCursor (NULL, IDCWAIT));
model->stepModel (nsteps);
SetCursor (hCursor);
Ref resh();

IICMRestart() menu function restarts entire model
void ModelViewer: :CMRestart(RTMessage mag)

model->restart 0;
Ref resh();

/1Step the model continuously
void
ModelViewer: :CMContinue (RTMessage msg)

f
HCtRSOR hCursor;
hCursor=SetCursor(LoadCursor(NULL, IDCWAIT));
model->stepModel (mcdel->stop-model->CurTime);
SetCursor (hCursor);
Ref resh();

ftRef resh() function forces all model windows to redraw
void ModelViewer: :Refresh()

f
InvalidateRect(res->HWindow, NULL, TRUE);
InvalidateRect(tasks->HWindow, NULL, TRUE);
InvalidateRect (allocations->HWindow, NULL, TRUE);
InvalidateRect (control->HWindow, NULL, TRUE);
InvalidateRecttsummary->HWindow, NULL, TRUE);

/1ControlWindow Constructor - creates buttons for user to press
//on the control window.

ControlWindow: :ControlWindow (ModelViewer *m)
TWindow(m, "Control")

85

modwin.cpp

int w, h;
HDC hdc;

// Calculate default font size
hdc = GetDC(m->HWindow);
GetTextSize(hdc, w, h);
ReleaseDC(m->HWindow, hdc);
Attr.H = h*4;
Attr.W = w*40;
model = m

// Create the step, quit and restart buttons
Attr.Style 1= WS -POPUPWINDOW I WS-CAPTION;
new TButton(this,CM_-STEP, "&Step", w, 0, w*8, h*3/2,TRUE);
new TButton(this, IDOK, "&Quit", w*9, 0, w*8, h*3/2,FALSE);
new TButton(this, CMRESTART, "&Restart", w*17, 0,

w*1O, h*3/2,FALSE);
new TButton(this, CMCONTINUE, "&Continuous", w*27, 0,

w*12, h*3/2,FALSE);

1/This function could be used to set up additonal controls
void ControlWindow: :SetupWindow()

TWindow: :SetupWindowo;

//CHStep() command is called when user presses Step button
IIto step the model forward nsteps.

void ControlWindow: :CMStep(RTMessage mag)

model->CMStep(msg);

IICMRestart() function is called when the restart button is pressed
void ControlWindow: :CHRestart(RT~essage msg)

model->CMRestart (mug);

void
ControlWindow::CMContinue (RTMessage meg)

model->CMContinue (mug);

IICMOK function is called when the quit button is pressed
void ControlWindow: :CHOK(RTMessage mug)

86

modwin .cpp

model->CloseWindowo;

//Paint in this case displays the mandays expended at
//the bottom of the control window. Later versions
//will probably put mandays expended on its own report
IIor graph.

void ControlWindow::Paint (HDC hdc, PAINTSTRUCT -FAR &ps)

f
int w,h;
char s[25];
RECT rect;
GetTextSize(hdc, w,h);
SetRect(&rect, 0, h*2, 18*w, h*3);
wsprintf(s, 'Day %d", (model->getMOdel())->getCurTimeo);
DrawText(hdc, s, lstrlen(e), &rect, DT-CENTERIDTSINGLELINE);

//The CMNSteps() function c-an be used to change the user
1/step size in the model.

void ControlWindow: :CMNSteps(RTMessage meg)

f
mnt val, ret;

i~f(msg.LP.Hi 1= ENCHANGE)
return;

val = GetDlgltemlnt(HWindow, RNSTEPS,&ret, FALSE);
model->setSteps (val);

IIInitialize a summary window for key outputs
SuimmaryWindow: :SummaryWindow(ModelViewer *mv)

:TWindow(mv, "Summary")

m=mv;

void
SunimaryWindow::Paint(HDC hdc, PAINTSTRUCT _FAR &ps)

f
char 9[100];
Model *mod;
double sz, errs;
RECT r;
mod - m->getModel();

// Write out current time
TextOut(hdc,0,0,"Time", 4);
wuprintf(s, "%d",mod->CurTime);
TextOut(hdc, 1O*w-txt, 0, 8, letrlen(s));

87

modwin.cpp

//Write out mandays Expended
TextOut(hdc, 0, h txt, "Mandays", 7);
SetRect(&r, w -txt*10, h -txt, w -txt*20, 2*h-txt);
(mod->getMandays()).paintTo(hdc, &r);

// Write out Project Size
8z = 0.0;
Arraylterator i(*mod->getTasks());
for(i.restarto; i.current() != NOOBJECT; i++)

sz += ((Task &) i.currento).getValueo;
sprintf(s, "%f KDSL",sz);
TextOut(hdc, 0, 2*h -txt, "Size", 4);
TextOut(hdc, 6*w-txt, 2*h-txt, 8, istrien(s));

// Write out total errors per KSDL
errs= 0.0;
for(i.restart(); i.current) I= NOOBJECT; i++)

errs += (((Tack &)i.current()).getErrors())->getValueo;
sprintf(s, "%f Errs/KDSL", errs/Bz);
TextOut(hdc, 0, 3*h -txt,"Errs", 4);
TextOut(hdc, 6*w-txt, 3*h-txt, 8, istrien(s));

//Construct a new resource window by setting the Resources
//data member.

ResourceWindow: :ResourceWindow(ModelViewer *mv)
.TWindow(mv, "Resources")

Model *m;
m=mv->getModel();
Resources = m->getResources();

//The Paint function repaints the resource window showing
//the name and number of each resource

void
ResourceWindow::Paint(HDC hdc, PAINTSTRUCT _FAR &ps)

Resource *r;
mnt x0O,y=0;
RECT rect;
Arraylterator i (*Resources);

// Walk all resources
for(i.restarto; i.current() I= NOOBJECT; i++)

x-0;
r- &((Resource &) i.currento);
// Display the resource name
TextOut(hdc, x, y, r->getNameo, lstrlen(r->getNameO));;

modwin.cpp

SetRect(&rect, x+20*w -txt, y, x+40*w txt, y+h -txt);
// Display the number of resources

r->paintTo(hdc, &rect);
y+= h-txt;

//Create a TaskWindow by setting the Tasks data member
TaskWindow: :TaskWindow(ModelViewer *mv)

:TWindow(mv, "Tasks")

f
Model *m;
m=mv->getuodel();
Tasks = m->getTaskso;

IfPaint to a TaskWindow - display the task names,
//their work waiting and the errors for each

void
TaskWindow::Paint(HDC hdc, PAINTSTRUCT -FAR &ps)

f
Task *t;
mnt x=O,y=O;
RECT rect;
Arraylterator i(*Tasks);

// Walk all tasks
for(i.restartfl; i.current() I= NOOBJECT; i++)

f
X0O;

t= &((Task &) i.current());
// Display the task name
TextOut(hdc, x, y, t->getNameo, lstrlen(t->getName()));;
SetRect(&rect, x+20*w -txt, y, x+30*w-txt, y+h-txt);
// Display the work waiting value

t->paintTo(hdc, &rect);
SetRect(&rect, x+30*w -txt, y, x+40*w-txt, y4h-htxt);

// Display the number of errors
(t->getErrors())->paintTo(hdc, &rect);
y+- h-txt;

1/The AllocationWindow constructor - sets the Allocations
//data member for display of model allocations

'dlocationWindow: :AllocationWindow(ModelViewer *mv)
:TWindow(mv, "Allocation of Resources")

Model *m;
m-mv->-qetModel ();
Allocations - m->getAllocations();

89

modwinx.pp

1/AllocationWindow Paint function - Displays the task name,
//resource name, and number of resources allocated f or
Ifeach allocation.

void
AllocationWindow::Paint(HDC hdc, PAINTSTRUCT _FAR &ps)

Allocation *a;
Task *t;
Resource *r;
int x0O,y=O;
P".CT rect;
Arraylterator i(*AllocationsJ;

// Walk all resources
for(i.restartoi; i-current()! NOOBJECT; i++)

{
x0O;
a= &((Allocation &) i.currentoi);
t=a->getTasko;
// Display the task name

TextOut(hdc, x, y, t->getNameo, lstrlen(t->getNameo));
x+=15*w txt;
r=a->getResourceo;

// Display the resource name
TextOut(hdc, x, y, r->getNameop, lstrlen(r->getName()));;
SetRect(&rect, x+15*w txt, y, x+25*w Itxt, y+h txt);
// Display the number of resources allocated
a->paintTo(hdc, &rect);
y+= h-txt;

IfAdd a point to the graph's point list
void
Graph: :AddPoint(double v)

f
points->add(*(new GPoint(v)));

IIStep graph - add next point to it
void
Graph: :step()

f
double v;
if((count++ % point_count) =-0)

I
AddPoint((v=value->getValue()));
minvalue= MIN(v, minvalue);
maxvalue - MAX(v, maxvalue);

90

modwin .cpp

GraphWindow: :GraphWindow(ModelViewer *m, LPSTR name)
:TWi~ndow(m, name)

f
modelv = m
minval=0.0; maxval = 0.01;
// Create graphs array
graphs = new Array(5,0,1);
graphs->ownsElements (TRUE);

void
GraphWindow: :AddGraph(Value *v, LPSTR name, int np)

I
graphs->add(*(new Graph(v, name, np)));

void
GraphWindow: :step()

f
Graph *g;
Arraylterator i(*graphs);
for(i.restarto; i.current() 1= NOOBJECT; i++)

f
g= &((Graph &)i.currentofl;
g->stepo;
minval = MIN(minval, g->minvalue);
maxval = MAX(maxval, g->maxvalue);

I
Refresh 0;

void
GraphWindow: :restart()

Graph *g;
Arraylterator i (*graphs);
minval = 0.0;
ma~xval = 0.01;
for(i.restarto; i.current() I- NOOBJECT; i++)

g= &((Graph &)i.currentofl;
g->rest arto(;
minval = MIN(minval, g->minvalue);
maxval - MAX(maxval, g-)maxvalue);

Refresh();

modwinxcpp

#define TXTWID 18
#define MIN-SIZE 75
void
GraphWindow::Paint(HDC hdc, PAINTSTRUCT &ps)

RECT g; /1Area allocated for graphing
RECT t; //Text area
RECT r; 1/Client Window area
int y,x,c, c2;
LPSTR name;
char s[20];
Graph *graph;
GPoint. *p;

// Determine extents of the graph area
GetClientRect(HWindow, &r);

// Allocate a straight TXTWID for text
g.top h h txt;
g.left = l*w-txt;
g.bottom =MAX(MIN_-SIZE, r.bottom-2*h-txt);
g.right =MAX(MINSIZE, r.right-g.left-TXTWID*w-txt);

// Allocate area for legend
t.top =g.top;
t.left =g.right+w-txt;

t.bottom h h txt * graphs->getltemslnContainer() + g.top;
t.right =t.left + TXTWID*w txt;

// Draw axis
MoveTo(hdc, g.left,g.top);
LineTo(hdc, g.left,g.bottom);
LineTo(hdc, g.right, g.bottom);

// Draw x numbers
MoveTo(hdc, g.left,g.bottom);
LineTo(hdc, g. left,g.bottom+h -txt/2);
Textout(hdc, g.left-w-txt/2, g.bottom+h -txt/2, "O",l);
hoveTo(hdc, x-g.left+(g.right-g.left)/2, g.bottom);
LineTo(hdc, x, y=g.bottom+h -txt/2);
wsprintf (5,"%d" ,modelv->get~odel ()->stop/2);
TextOut(hdc, x-2*w -txt, y,s,lstrlen(s));
MoveTo(hdc, g.right, g.bottom);
LineTo(hdc, g.right, y=g.bottom+h -txt/2);
wsprintf (a,"%d", modelv->getModel ()->etop);
TextOut(hdc, g..right-2*w-txt, y, a, latrlen(s));

// Draw Y Labels!
LabelYAxis(hdc,g);

IIDraw Text legend

92

modwin.cpp

y~t. top;
SetBkMode(hdc, TRANSPARENT);
Array Iterator i (*graphs);
C=0;
for(i.restarto; i-current() 1= NOOBJECT; i++)

name = ((Graph &) i.currentofl.getNameo;
SelectColor(hdc, c++);
TextOut(hdc,t.left, y, name, lstrlen(name));
y+=h-txt;

IfBegin drawing points
C=O;
for(i.restarto; i.current() I= NOOBJECT; i++)

graph = (Graph *) &i.current();
SelectColor (hdc,c++);
// Draw each set of points
Arraylterator j (*graph..>points);
c2=0;
for(j.restarto; j.current() I= NOOBJECT; j++)

x=g. left+ (c2* (float) {g. right-g. left))/modelv->get~odel ()->stop;
//Scale time axis
y=g.bottom- (((GPoint &) j.current()).getValue(-minval)

*(float) (g.bottom-g.top)/(maxval-.minval);
//Draw line

if(c2==O)
HoveTo(hdc, x,y);

else
LineTo(hdc, x, y);

IIJump to next point count on x axis
c2+= graph->point count;

//Eventually need to add axis code

static HPEN hColorPen;

void
SelectColor(HDC hdc, mnt i)

COLORREF rgbColor;
HPEN hliewPen;

switch(i%4)

f
case 0:

93

modwin.cpp

rgbColor = RGB(255,O,O); // Red
break;

case 1:
rgbColor = RGB(O, 255, 0); 1/Green
break;

case 2:
rgbColor = RGB(O,O,255); IfBlue
break;

case 3:
rgbColor = RGB(128,128,128); IIGrey
break;

Selectobject(hdc,(hliewPen = CreatePen(PSSOLID, 1, rgbColor)));
if (hColorPen)
DeleteObject (hColorPen);

hColorPen = hNewPen;
SetTextColor(hdc, rgbColor);

IICreate Y Axis Label
void
GraphWindow: :LabelYAxis(HDC hdc, RECT &g)

I
double step, start,i;
int y;
char s(25];
// Determine step
i = (int)loglO(maxval-minval);
step = pow(l0.0, (float) i);
start = ((int)(minval/step)) * step;
for(; start < maxval; start += step)

y = g.bottom-((start-minval)*(float) (g.bottom-g.top)/
(maxval-minval));

MoveTo(hdc, g.left,y);
LineTo(hdc, g.left-w -txt/2, y);
sprintf(s, "%g",start);
Textout(hdc, g.left-lstrlen(s)*w._txt-w txt, y-h_txt/2,

s, lstrlen(s));

94

Appendix C

Sample Graphs

and Reports

95

Control Window: Used to step, restart and quit the model.

DMay 3--2 0

Summary Window: Displays summary of project statistics including current day, mandays

expended, size, and total errors per thousand lines of code.

andays 3291.20
ize 39.239377 KDSL
rrs 0.A30244 Errs/KDSL

Resource Window: Displays resource names and number of resources.

eople 6.60
o9rammers 7.00

98

Allocation of Resources: Shows the number of resources assigned from each resource

object to each task object.

Requirements People 0.04
Design People 0.78
Coding People 2.11
esting People 3.67
equirements Programmers 0.04
esign Programmers 0.83

Coding Programmers 2.23
esting Programmers 3.89

Tasks: Report showing the amount of work (in KDSL) for each task and the total number of

undetected errors in the task.

Requirements 0.00 17.43
esign 0.00 168.76
oding 0.00 238.78
esting 0.00 0.00

oork Done! 39.24 0.00

Work Done: Graph showing the work waiting in each task.

30 Requirements

rNsi ign
Coding

20 T-!stinq

101,
20

0160 320

97

Mandays Graph: Graph showing the number of mandays remaining in the scheduled project

versus the number of mandays estimated to complete the project. Total mandays expended to

date are also displayed.

300/ Mandays Expended

3000 E"stimat1ed MarndhyV
N Mandays Remaining

2000 /

1000

0 6160 320

Errors Graph: Display-; the total number of undiscovered errors in each task object.

"Requirements Errs
300 ", Desiqn Efrs

Code Errs

200 "

100 ,

I I

0 160 320

98

Overtime: Displays a graph of the overtime assigned on the project to date in terms of hours

per workweek. Overtime is considered any value over 40 hours per week. In the example

shown, no overtime was used.

40 Hours Per Week

30

20

10

0 I
0 160 320

Burnout: Displays the total burnout level for people assigned to the project. Burnout varies

from zero to 100%.

Hurnout

0
0 160 320

99

References

1 Tom DeMarco and Timothy Lister, Peogleware: Productive Projects and Teams, Corset
House Publishing Co. , New York, 1987, p. 188

2 Barry Boehm, Software Engineering E-conomics, The COCOMO Software Model, 1980
3 Roger Pressman, Software Engineering. A Practicioner's Approach,
McGraw-Hill, 1992 p. 87
4 Pressman, p. 83-91
5 High Performance Systems Inc, Stella II Users Guide. 1990
r Tarek Abdel-Hamid and Stuart Madnick, Software Project Dynamics, 1991
7 B. Smith, A. Clough, R. Vidale, N. Nguyen, S. Ahmed, The Software Process Model, Draper

Labs, May 1992
8 Smith, Clough, Vidale, Ahmed, and Nguyen
9 Bradley Smith, Proposal for Independent Study of an Obiect Oriented Software Process

Model, May 1992
10 Smith, Clough, Vidale, Ahmed, and Nguyen
"1 Abdel-Hamid and Madnick
12 Military Standard 2167A The Software Life Cycle
13 Grady and Caswell, Software Metrics Prentice Hall, 1987, p. 24-25
14 Grady and Caswell, p. 25
15 Smith, Clough, Vidale, Ahmed, and Nguyen, p. 9
16 Smith, Clough, Vidale, Ahmed, and Nguyen, p. 11
"17 Boehm, p. 381-3
18 Grady and Caswell
19 Abdel-Hamid and Madnick

20 Grady and Caswell, p. 224
21 Abdel-Hamid and Madnick
22 Abdel-Hamid and Madnick, p. 68
23 Abdel-Hamid and Madnick, p. 83
24 Abdel-Hamid and Madnick, p. 87
25 Smith, Clough, Vidale, Ahmed, and Nguyen, p. 22
26 Abdel-Hamid and Madnick
27 Smith, Clough, Vidale, Ahmed, and Nguyen
20 Borland International, Borland C++ Proarammer's Guide, Version 3.1, 1992
29 Borland International, ObiectWindows for C++ Users Guide, Version 3.1, 1992
30 Microsoft Inc., Microsoft Windows Users Guide, Version 3.1, 1992
31 Smith, Clough, Vidale, Ahmed, and Nguyen
32 Boehm
33 Smith, Clough, Vidale, Ahmed, and Nguyen
34 Roger S. Pressman, Software Engineering, Roger S. Pressman, Third Edition, p. 26

100

